Zhang, Y. X. et al. Global health effects of future atmospheric mercury emissions. Nat. Commun. 12, 10 (2021).
Google Scholar
Streets, D. G. et al. Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmos. Environ. 201, 417–427 (2019).
Google Scholar
Global Mercury Assessment 2018 (UNEP, 2019).
Streets, D. G. et al. Total mercury released to the environment by human activities. Environ. Sci. Technol. 51, 5969–5977 (2017).
Google Scholar
Seco, J. et al. Mercury biomagnification in a Southern Ocean food web. Environ. Pollut. 275, 116620 (2021).
Google Scholar
Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A. & Campbell, L. M. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ. Sci. Technol. 47, 13385–13394 (2013).
Google Scholar
Bose-O’Reilly, S., McCarty, K. M., Steckling, N. & Lettmeier, B. Mercury exposure and children’s health. Curr. Probl. Pediatr. Adolesc. Health Care 40, 186–215 (2010).
Google Scholar
Zhang, H., Feng, X. B., Larssen, T., Qiu, G. L. & Vogt, R. D. In Inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ. Health Perspect. 118, 1183–1188 (2010).
Google Scholar
Liu, M. et al. Significant elevation of human methylmercury exposure induced by the food trade in Beijing, a developing megacity. Environ. Int. 135, 105392 (2020).
Google Scholar
Liu, M. D. et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure. Nat. Commun. 10, 5164 (2019).
Google Scholar
Polak-Juszczak, L. Total mercury and methylmercury in garfish (Belone belone) of different body weights, sizes, ages, and sexes. J. Trace Elem. Med. Biol. 79, 127220 (2023).
Google Scholar
Zampetti, C. J. & Brandt, J. E. Co-considering selenium concentrations alters mercury-based fish and seafood consumption advice: a data compilation and critical assessment. Environ. Sci. Technol. Lett. 10, 179–185 (2023).
Google Scholar
Bjørklund, G., Dadar, M., Mutter, J. & Aaseth, J. The toxicology of mercury: current research and emerging trends. Environ. Res. 159, 545–554 (2017).
Google Scholar
The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation (FAO,2022).
Xing, Z. et al. International trade shapes global mercury–related health impacts. PNAS Nexus 2, pgad128 (2023).
Google Scholar
Lavoie, R. A., Bouffard, A., Maranger, R. & Amyot, M. Mercury transport and human exposure from global marine fisheries. Sci. Rep. 8, 6705 (2018).
Google Scholar
Evaluation of Certain Food Additives and Contaminants: Sixty-First Report of the Joint FAO/WHO Expert Committee on Food Additives (WHO, 2003).
Xie, J. et al. Mercury and selenium in squids from the Pacific Ocean and Indian Ocean: the distribution and human health implications. Mar. Pollut. Bull. 173, 112926 (2021).
Google Scholar
Médieu, A., Lorrain, A. & Point, D. Are tunas relevant bioindicators of mercury concentrations in the global ocean? Ecotoxicology 32, 994–1009 (2023).
Google Scholar
Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).
Google Scholar
Jiskra, M. et al. Mercury stable isotopes constrain atmospheric sources to the ocean. Nature 597, 678–682 (2021).
Google Scholar
Chen, L. et al. Trans-provincial health impacts of atmospheric mercury emissions in China. Nat. Commun. 10, 1484 (2019).
Google Scholar
Giang, A. & Selin, N. E. Benefits of mercury controls for the United States. Proc. Natl Acad. Sci. USA 113, 286–291 (2016).
Google Scholar
Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A. & Landing, W. M. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Glob. Biogeochem. Cycles 23, GB2010 (2009).
Bratkic, A. et al. Mercury presence and speciation in the South Atlantic Ocean along the 40°S transect. Glob. Biogeochem. Cycles 30, 105–119 (2016).
Google Scholar
Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–907 (2018).
Google Scholar
Pauly, D. et al. China’s distant-water fisheries in the 21st century. Fish Fish. 15, 474–488 (2014).
Google Scholar
Liu, M. et al. Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environ. Int. 120, 333–344 (2018).
Google Scholar
Springmann, M., Kennard, H., Dalin, C. & Freund, F. International food trade contributes to dietary risks and mortality at global, regional and national levels. Nat. Food 4, 886–893 (2023).
Google Scholar
Trade map. ITC https://www.trademap.org/Index.aspx (2023).
Muir, D. C. G. Toxic chemical exposure from global fish trade. Nat. Food 1, 259–259 (2020).
Google Scholar
Xu, Y. J., Li, J., Bo, Y. & Wang, R. P. Comparison of feeding behaviour characteristics between wild-caught and captive-reared Hippocampus kuda Bleeker. Appl. Anim. Behav. Sci. 259, 105850 (2023).
Google Scholar
Govzman, S. et al. A systematic review of the determinants of seafood consumption. Br. J. Nutr. 126, 66–80 (2021).
Google Scholar
Sharma, B. M., Sáňka, O., Kalina, J. & Scheringer, M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. Environ. Int. 125, 300–319 (2019).
Google Scholar
Calder, R. S. D., Bromage, S. & Sunderland, E. M. Risk tradeoffs associated with traditional food advisories for Labrador Inuit. Environ. Res. 168, 496–506 (2019).
Google Scholar
Technical Background Report for the Global Mercury Assessment 2018 (AMAP/UNEP, 2019).
Murray, G. D. et al. Seafood consumption and the management of shellfish aquaculture. Mar. Policy 150, 105534 (2023).
Google Scholar
Racine, P. et al. A case for seaweed aquaculture inclusion in US nutrient pollution management. Mar. Policy 129, 104506 (2021).
Google Scholar
Zhang, J., Wu, W., Li, Y., Liu, Y. & Wang, X. Environmental effects of mariculture in China: an overall study of nitrogen and phosphorus loads. Acta Oceanolog. Sin. 41, 4–11 (2022).
Google Scholar
Sumaila, U. R. et al. Illicit trade in marine fish catch and its effects on ecosystems and people worldwide. Sci. Adv. 6, eaaz3801 (2020).
Google Scholar
Peterson, S. A., Van Sickle, J., Herlihy, A. T. & Hughes, R. M. Mercury concentration in fish from streams and rivers throughout the western United States. Environ. Sci. Technol. 41, 58–65 (2007).
Google Scholar
Nowosad, J. et al. Dynamics of mercury content in adult sichel (Pelecus cultratus L.) tissues from the Baltic Sea before and during spawning. Mar. Environ. Res. 148, 75–80 (2019).
Google Scholar
Erasmus, V. N., Hamutenya, S., Iitembu, J. A. & Gamatham, J. C. Mercury concentrations in muscles and liver tissues of Cape monkfish (Lophius vomerinus) from the Northern Benguela, Namibia. Mar. Pollut. Bull. 135, 1101–1106 (2018).
Google Scholar
Jinadasa, K. K., Herbello-Hermelo, P., Peña-Vázquez, E., Bermejo-Barrera, P. & Moreda-Piñeiro, A. Mercury speciation in edible seaweed by liquid chromatography—inductively coupled plasma mass spectrometry after ionic imprinted polymer-solid phase extraction. Talanta 224, 121841 (2021).
Google Scholar
Global production by production source 1950-2021 (FishStatJ). FAO https://www.fao.org/fishery/en/statistics/software/fishstatj (2023).
Global aquatic trade statistics – Global aquatic trade – by partner country. FAO https://www.fao.org/fishery/en/collection/global_commodity_prod (2023).
Rodrigues, E. T., Coelho, J. P., Pereira, E. & Pardal, M. A. Are mercury levels in fishery products appropriate to ensure low risk to high fish-consumption populations? Mar. Pollut. Bull. 186, 114464 (2023).
Perugini, M. et al. Effect of cooking on total mercury content in Norway lobster and European hake and public health impact. Mar. Pollut. Bull. 109, 521–525 (2016).
Google Scholar
Food balance sheets of aquatic products 1961–2019 (FishStatJ) v2023.1.0. FAO https://www.fao.org/fishery/en/collection/global_fish_consump (2023).
Anderson, G. Error propagation by the Monte Carlo method in geochemical calculations. Geochim. Cosmochim. Acta 40, 1533–1538 (1976).
Google Scholar
Taylor, J. Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements (University Science Books, 1997).
Soerensen, A. L., Faxneld, S., Pettersson, M. & Sköld, M. Fish tissue conversion factors for mercury, cadmium, lead and nine per- and polyfluoroalkyl substances for use within contaminant monitoring. Sci. Total Environ. 858, 159740 (2023).
Google Scholar
Boalt, E., Miller, A. & Dahlgren, H. Distribution of cadmium, mercury, and lead in different body parts of Baltic herring (Clupea harengus) and perch (Perca fluviatilis): implications for environmental status assessments. Mar. Pollut. Bull. 78, 130–136 (2014).
Google Scholar
Rice, G. E., Hammitt, J. K. & Evans, J. S. A probabilistic characterization of the health benefits of reducing methyl mercury intake in the United States. Environ. Sci. Technol. 44, 5216–5224 (2010).
Google Scholar