Global seafood production practices and trade patterns contribute to disparities in exposure to methylmercury

Global seafood production practices and trade patterns contribute to disparities in exposure to methylmercury


  • Zhang, Y. X. et al. Global health effects of future atmospheric mercury emissions. Nat. Commun. 12, 10 (2021).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Streets, D. G. et al. Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmos. Environ. 201, 417–427 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Global Mercury Assessment 2018 (UNEP, 2019).

  • Streets, D. G. et al. Total mercury released to the environment by human activities. Environ. Sci. Technol. 51, 5969–5977 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Seco, J. et al. Mercury biomagnification in a Southern Ocean food web. Environ. Pollut. 275, 116620 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A. & Campbell, L. M. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ. Sci. Technol. 47, 13385–13394 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bose-O’Reilly, S., McCarty, K. M., Steckling, N. & Lettmeier, B. Mercury exposure and children’s health. Curr. Probl. Pediatr. Adolesc. Health Care 40, 186–215 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H., Feng, X. B., Larssen, T., Qiu, G. L. & Vogt, R. D. In Inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ. Health Perspect. 118, 1183–1188 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, M. et al. Significant elevation of human methylmercury exposure induced by the food trade in Beijing, a developing megacity. Environ. Int. 135, 105392 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, M. D. et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure. Nat. Commun. 10, 5164 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Polak-Juszczak, L. Total mercury and methylmercury in garfish (Belone belone) of different body weights, sizes, ages, and sexes. J. Trace Elem. Med. Biol. 79, 127220 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zampetti, C. J. & Brandt, J. E. Co-considering selenium concentrations alters mercury-based fish and seafood consumption advice: a data compilation and critical assessment. Environ. Sci. Technol. Lett. 10, 179–185 (2023).

    Article 
    CAS 

    Google Scholar 

  • Bjørklund, G., Dadar, M., Mutter, J. & Aaseth, J. The toxicology of mercury: current research and emerging trends. Environ. Res. 159, 545–554 (2017).

    Article 
    PubMed 

    Google Scholar 

  • The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation (FAO,2022).

  • Xing, Z. et al. International trade shapes global mercury–related health impacts. PNAS Nexus 2, pgad128 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lavoie, R. A., Bouffard, A., Maranger, R. & Amyot, M. Mercury transport and human exposure from global marine fisheries. Sci. Rep. 8, 6705 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evaluation of Certain Food Additives and Contaminants: Sixty-First Report of the Joint FAO/WHO Expert Committee on Food Additives (WHO, 2003).

  • Xie, J. et al. Mercury and selenium in squids from the Pacific Ocean and Indian Ocean: the distribution and human health implications. Mar. Pollut. Bull. 173, 112926 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Médieu, A., Lorrain, A. & Point, D. Are tunas relevant bioindicators of mercury concentrations in the global ocean? Ecotoxicology 32, 994–1009 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jiskra, M. et al. Mercury stable isotopes constrain atmospheric sources to the ocean. Nature 597, 678–682 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Chen, L. et al. Trans-provincial health impacts of atmospheric mercury emissions in China. Nat. Commun. 10, 1484 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Giang, A. & Selin, N. E. Benefits of mercury controls for the United States. Proc. Natl Acad. Sci. USA 113, 286–291 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A. & Landing, W. M. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Glob. Biogeochem. Cycles 23, GB2010 (2009).

  • Bratkic, A. et al. Mercury presence and speciation in the South Atlantic Ocean along the 40°S transect. Glob. Biogeochem. Cycles 30, 105–119 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–907 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Pauly, D. et al. China’s distant-water fisheries in the 21st century. Fish Fish. 15, 474–488 (2014).

    Article 
    MATH 

    Google Scholar 

  • Liu, M. et al. Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environ. Int. 120, 333–344 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Springmann, M., Kennard, H., Dalin, C. & Freund, F. International food trade contributes to dietary risks and mortality at global, regional and national levels. Nat. Food 4, 886–893 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trade map. ITC https://www.trademap.org/Index.aspx (2023).

  • Muir, D. C. G. Toxic chemical exposure from global fish trade. Nat. Food 1, 259–259 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Xu, Y. J., Li, J., Bo, Y. & Wang, R. P. Comparison of feeding behaviour characteristics between wild-caught and captive-reared Hippocampus kuda Bleeker. Appl. Anim. Behav. Sci. 259, 105850 (2023).

    Article 

    Google Scholar 

  • Govzman, S. et al. A systematic review of the determinants of seafood consumption. Br. J. Nutr. 126, 66–80 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Sharma, B. M., Sáňka, O., Kalina, J. & Scheringer, M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. Environ. Int. 125, 300–319 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Calder, R. S. D., Bromage, S. & Sunderland, E. M. Risk tradeoffs associated with traditional food advisories for Labrador Inuit. Environ. Res. 168, 496–506 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Technical Background Report for the Global Mercury Assessment 2018 (AMAP/UNEP, 2019).

  • Murray, G. D. et al. Seafood consumption and the management of shellfish aquaculture. Mar. Policy 150, 105534 (2023).

    Article 
    MATH 

    Google Scholar 

  • Racine, P. et al. A case for seaweed aquaculture inclusion in US nutrient pollution management. Mar. Policy 129, 104506 (2021).

    Article 
    MATH 

    Google Scholar 

  • Zhang, J., Wu, W., Li, Y., Liu, Y. & Wang, X. Environmental effects of mariculture in China: an overall study of nitrogen and phosphorus loads. Acta Oceanolog. Sin. 41, 4–11 (2022).

    Article 
    MATH 

    Google Scholar 

  • Sumaila, U. R. et al. Illicit trade in marine fish catch and its effects on ecosystems and people worldwide. Sci. Adv. 6, eaaz3801 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Peterson, S. A., Van Sickle, J., Herlihy, A. T. & Hughes, R. M. Mercury concentration in fish from streams and rivers throughout the western United States. Environ. Sci. Technol. 41, 58–65 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nowosad, J. et al. Dynamics of mercury content in adult sichel (Pelecus cultratus L.) tissues from the Baltic Sea before and during spawning. Mar. Environ. Res. 148, 75–80 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Erasmus, V. N., Hamutenya, S., Iitembu, J. A. & Gamatham, J. C. Mercury concentrations in muscles and liver tissues of Cape monkfish (Lophius vomerinus) from the Northern Benguela, Namibia. Mar. Pollut. Bull. 135, 1101–1106 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jinadasa, K. K., Herbello-Hermelo, P., Peña-Vázquez, E., Bermejo-Barrera, P. & Moreda-Piñeiro, A. Mercury speciation in edible seaweed by liquid chromatography—inductively coupled plasma mass spectrometry after ionic imprinted polymer-solid phase extraction. Talanta 224, 121841 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Global production by production source 1950-2021 (FishStatJ). FAO https://www.fao.org/fishery/en/statistics/software/fishstatj (2023).

  • Global aquatic trade statistics – Global aquatic trade – by partner country. FAO https://www.fao.org/fishery/en/collection/global_commodity_prod (2023).

  • Rodrigues, E. T., Coelho, J. P., Pereira, E. & Pardal, M. A. Are mercury levels in fishery products appropriate to ensure low risk to high fish-consumption populations? Mar. Pollut. Bull. 186, 114464 (2023).

  • Perugini, M. et al. Effect of cooking on total mercury content in Norway lobster and European hake and public health impact. Mar. Pollut. Bull. 109, 521–525 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Food balance sheets of aquatic products 1961–2019 (FishStatJ) v2023.1.0. FAO https://www.fao.org/fishery/en/collection/global_fish_consump (2023).

  • Anderson, G. Error propagation by the Monte Carlo method in geochemical calculations. Geochim. Cosmochim. Acta 40, 1533–1538 (1976).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Taylor, J. Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements (University Science Books, 1997).

  • Soerensen, A. L., Faxneld, S., Pettersson, M. & Sköld, M. Fish tissue conversion factors for mercury, cadmium, lead and nine per- and polyfluoroalkyl substances for use within contaminant monitoring. Sci. Total Environ. 858, 159740 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boalt, E., Miller, A. & Dahlgren, H. Distribution of cadmium, mercury, and lead in different body parts of Baltic herring (Clupea harengus) and perch (Perca fluviatilis): implications for environmental status assessments. Mar. Pollut. Bull. 78, 130–136 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rice, G. E., Hammitt, J. K. & Evans, J. S. A probabilistic characterization of the health benefits of reducing methyl mercury intake in the United States. Environ. Sci. Technol. 44, 5216–5224 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 




  • Source link

    Previous Article

    Six Nations 2025: Jack Crowley starts as Ireland make six changes for Italy game

    Next Article

    The "dangerous" reason why Trump wants Mel Gibson to get his gun rights back

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨