Navigating biodiversity patterns in fragmented seagrass mosaics

Navigating biodiversity patterns in fragmented seagrass mosaics


  • Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).

    Article 

    Google Scholar 

  • Haddad, N. M. et al. Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci. Adv. 1, e1500052. https://doi.org/10.1126/sciadv.150005 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindenmayer, D. B. & Fischer, J. Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis (Island Press, 2013).

  • Janin, A., Léna, J.-P. & Joly, P. Habitat fragmentation affects movement behavior of migrating juvenile common toads. Behav. Ecol. Sociobiol. 66, 1351–1356. https://doi.org/10.1007/s00265-012-1390-8 (2012).

    Article 

    Google Scholar 

  • Rybicki, J., Abrego, N. & Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 23, 506–517. https://doi.org/10.1111/ele.13450 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gray, J. S. Marine biodiversity: patterns, threats and conservation needs. Biodivers. Conserv. 6, 153–175. https://doi.org/10.1023/A:1018335901847 (1997).

    Article 

    Google Scholar 

  • Wilson, M. C. et al. Habitat Fragmentation and Biodiversity Conservation: Key Findings and Future Challenges. https://doi.org/10.1007/s10980-015-0312-3 (2016).

  • van Nouhuys, S. Effects of habitat fragmentation at different trophic levels in insect communities. In Annales Zoologici Fennici 433–447 (JSTOR, 2005).

  • Pierri-Daunt, A. B. & Tanaka, M. O. Assessing habitat fragmentation on marine epifaunal macroinvertebrate communities: an experimental approach. Landscape Ecol. 29, 17–28. https://doi.org/10.1007/s10980-013-9970-1 (2014).

    Article 

    Google Scholar 

  • Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790. https://doi.org/10.1073/pnas.160610211 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, N. J. et al. High-resolution mapping of losses and gains of earth’s tidal wetlands. Science 376, 744–749. https://doi.org/10.1126/science.abm95 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381. https://doi.org/10.1073/pnas.0905620106 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855. https://doi.org/10.1111/gcb.15275 (2020).

    Article 
    ADS 

    Google Scholar 

  • Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285. https://doi.org/10.1016/j.oneear.2021.08.016 (2021).

    Article 
    ADS 

    Google Scholar 

  • Gross, A. et al. Fragmentation as a key driver of tree community dynamics in mixed subtropical evergreen forests in southern brazil. For. Ecol. Manage. 411, 20–26. https://doi.org/10.1016/j.foreco.2018.01.013 (2018).

    Article 

    Google Scholar 

  • Ries, L., Fletcher, R. J. Jr., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522. https://doi.org/10.1146/annurev.ecolsys.35.112202.130148 (2004).

    Article 

    Google Scholar 

  • Ewers, R. M., Thorpe, S. & Didham, R. K. Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88, 96–106. https://doi.org/10.1890/0012-9658(2007)88[96:sibeaa]2.0.co;2 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Yarnall, A. H., Byers, J. E., Yeager, L. A. & Fodrie, F. J. Comparing edge and fragmentation effects within seagrass communities: a meta-analysis. Ecology 103, e3603. https://doi.org/10.1002/ecy.3603 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. B 375, 20190454. https://doi.org/10.1098/rstb.2019.0454 (2020).

    Article 

    Google Scholar 

  • Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5, 18–32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x (1991).

    Article 

    Google Scholar 

  • Whippo, R. et al. Epifaunal diversity patterns within and among seagrass meadows suggest landscape-scale biodiversity processes. Ecosphere 9, e02490. https://doi.org/10.1002/ecs2.2490 (2018).

    Article 

    Google Scholar 

  • Boström, C., Jackson, E. L. & Simenstad, C. A. Seagrass landscapes and their effects on associated fauna: a review. Estuar. Coast. Shelf Sci. 68, 383–403. https://doi.org/10.1016/j.ecss.2006.01.026 (2006).

    Article 
    ADS 

    Google Scholar 

  • Hovel, K. A. & Fonseca, M. S. Influence of seagrass landscape structure on the juvenile blue crab habitat-survival function. Mar. Ecol. Prog. Ser. 300, 179–191. https://doi.org/10.3354/meps300179 (2005).

    Article 
    ADS 

    Google Scholar 

  • Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25. https://doi.org/10.1016/j.jembe.2017.01.007 (2018).

    Article 

    Google Scholar 

  • Duplá, M. V. Dynamics of a macrophyte-driven coastal ecotone: underlying factors and ecological implications. Estuar. Coast. Shelf Sci. 259, 107481. https://doi.org/10.1016/j.ecss.2021.107481 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zabarte-Maeztu, I. et al. Effects of fine sediment on seagrass meadows: a case study of Zostera muelleri in pāuatahanui inlet, new zealand. J. Mar. Sci. Eng. 8, 645. https://doi.org/10.3390/jmse8090645 (2020).

    Article 

    Google Scholar 

  • Riera, R. et al. Severe shifts of Zostera marina epifauna: comparative study between 1997 and 2018 on the swedish skagerrak coast. Mar. Pollut. Bull. 158, 111434. https://doi.org/10.1016/j.marpolbul.2020.111434 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boudreau, B. P. & Jorgensen, B. B. The Benthic Boundary Layer: Transport Processes and Biogeochemistry (Oxford University Press, 2001).

  • Lindsay, S. M. Frequency of injury and the ecology of regeneration in marine benthic invertebrates. Integr. Comp. Biol. 50, 479–493. https://doi.org/10.1093/icb/icq099 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Dauvin, J.-C. et al. An approach to validating simple benthic indicators: polychaete/amphipod ratios. Ecol. Ind. 63, 89–99. https://doi.org/10.1016/j.ecolind.2015.11.055 (2016).

    Article 

    Google Scholar 

  • Ieno, E. N., Solan, M., Batty, P. & Pierce, G. J. How biodiversity affects ecosystem functioning: roles of infaunal species richness, identity and density in the marine benthos. Mar. Ecol. Prog. Ser. 311, 263–271 (2006).

    Article 
    ADS 

    Google Scholar 

  • Bell, S. S., Brooks, R. A., Robbins, B. D., Fonseca, M. S. & Hall, M. O. Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biol. Cons. 100, 115–123. https://doi.org/10.1016/S0006-3207(00)00212-3 (2001).

    Article 

    Google Scholar 

  • Vonk, J. A., Christianen, M. J. & Stapel, J. Abundance, edge effect, and seasonality of fauna in mixed-species seagrass meadows in southwest sulawesi, indonesia. Mar. Biol. Res. 6, 282–291. https://doi.org/10.1080/17451000903233789 (2010).

    Article 

    Google Scholar 

  • Warry, F., Hindell, J., Macreadie, P., Jenkins, G. & Connolly, R. Integrating edge effects into studies of habitat fragmentation: a test using meiofauna in seagrass. Oecologia 159, 883–892. https://doi.org/10.1007/s00442-008-1258-9 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Baden, S., Gullström, M., Lundén, B., Pihl, L. & Rosenberg, R. Vanishing seagrass (Zostera marina, l.) in swedish coastal waters. AMBIO J. Hum. Env. 32, 374–377. https://doi.org/10.1579/0044-7447-32.5.374 (2003).

    Article 

    Google Scholar 

  • Bender, D. J., Tischendorf, L. & Fahrig, L. Using patch isolation metrics to predict animal movement in binary landscapes. Landscape Ecol. 18, 17–39. https://doi.org/10.1023/A:1022937226820 (2003).

    Article 

    Google Scholar 

  • Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663. https://doi.org/10.1111/jbi.12130 (2013).

    Article 

    Google Scholar 

  • Pierrejean, M., Cusson, M. & Rossi, F. Seasonal effects of edge and habitat complexity on eelgrass epifaunal assemblages. Mar. Ecol. Prog. Ser. 718, 39–52. https://doi.org/10.3354/meps14385 (2023).

    Article 
    ADS 

    Google Scholar 

  • Oksanen, J. Design decisions and implementation details in vegan. Vignette of the package vegan. R package version, vol. 2016 2–4 (2016).

  • Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology (2023). R package version 2.1-0.

  • Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund-an r package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474. https://doi.org/10.1111/j.2041-210X.2012.00190.x (2012).

    Article 

    Google Scholar 

  • Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101. https://doi.org/10.1111/j.2041-210X.2011.00127.x (2012).

    Article 

    Google Scholar 

  • Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data (2022). R package version 4.2.1.

  • Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324. https://doi.org/10.1146/annurev-ecolsys-120213-091540 (2014).

    Article 

    Google Scholar 

  • Bosch, N. E. et al. Niche and neutral assembly mechanisms contribute to latitudinal diversity gradients in reef fishes. J. Biogeogr. 48, 2683–2698. https://doi.org/10.1111/jbi.14237 (2021).

    Article 

    Google Scholar 

  • Li, D. Hillr: taxonomic, functional, and phylogenetic diversity and similarity through hill numbers. J. Open Sourc. Softw. 3, 1041. https://doi.org/10.21105/joss.01041 (2018).

    Article 
    ADS 

    Google Scholar 

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. https://doi.org/10.32614/RJ-2017-066 (2017).

    Article 

    Google Scholar 

  • Tanner, J. E. Edge effects on fauna in fragmented seagrass meadows. Austral Ecol. 30, 210–218. https://doi.org/10.1111/j.1442-9993.2005.01438.x (2005).

    Article 

    Google Scholar 

  • Sweatman, J. L., Layman, C. A. & Fourqurean, J. W. Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed. Mar. Environ. Res. 126, 95–108. https://doi.org/10.1016/j.marenvres.2017.02.003 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • La Manna, G., Donno, Y., Sarà, G. & Ceccherelli, G. The detrimental consequences for seagrass of ineffective marine park management related to boat anchoring. Mar. Pollut. Bull. 90, 160–166. https://doi.org/10.1016/j.marpolbul.2014.11.001 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iacarella, J. C. et al. Anthropogenic disturbance homogenizes seagrass fish communities. Glob. Change Biol. 24, 1904–1918. https://doi.org/10.1111/gcb.14090 (2018).

    Article 
    ADS 

    Google Scholar 

  • Blanco-Murillo, F. et al. Posidonia oceanica l (delile) meadows regression: long-term affection may be induced by multiple impacts. Mar. Environ. Res. 174, 105557. https://doi.org/10.1016/j.marenvres.2022.105557 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swadling, D. S., West, G. J., Gibson, P. T., Laird, R. J. & Glasby, T. M. Don’t go breaking apart: Anthropogenic disturbances predict meadow fragmentation of an endangered seagrass. Aquat. Conserv. Mar. Freshwat. Ecosyst. 33, 56–69. https://doi.org/10.1002/aqc.3905 (2023).

    Article 
    ADS 

    Google Scholar 

  • Moore, E. C. & Hovel, K. A. Relative influence of habitat complexity and proximity to patch edges on seagrass epifaunal communities. Oikos 119, 1299–1311. https://doi.org/10.1111/j.1600-0706.2009.17909.x (2010).

    Article 
    ADS 

    Google Scholar 

  • Reed, B. J. & Hovel, K. A. Seagrass habitat disturbance: how loss and fragmentation of eelgrass Zostera marina influences epifaunal abundance and diversity. Mar. Ecol. Prog. Ser. 326, 133–143. https://doi.org/10.3354/meps326133 (2006).

    Article 
    ADS 

    Google Scholar 

  • Micheli, F., Bishop, M. J., Peterson, C. H. & Rivera, J. Alteration of seagrass species composition and function over two decades. Ecol. Monogr. 78, 225–244 (2008).

    Article 

    Google Scholar 

  • Riva, F. & Fahrig, L. Landscape-scale habitat fragmentation is positively related to biodiversity, despite patch-scale ecosystem decay. Ecol. Lett. 26, 268–277. https://doi.org/10.1111/ele.14145 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Fahrig, L. Patch-scale edge effects do not indicate landscape-scale fragmentation effects. Conserv. Lett. 17, e12992. https://doi.org/10.1111/conl.12992 (2024).

    Article 

    Google Scholar 

  • Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243. https://doi.org/10.1038/s41586-020-2531-2 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Riva, F. & Fahrig, L. The disproportionately high value of small patches for biodiversity conservation. Conserv. Lett. 15, e12881. https://doi.org/10.1111/conl.12881 (2022).

    Article 

    Google Scholar 

  • Fahrig, L. Why do several small patches hold more species than few large patches?. Glob. Ecol. Biogeogr. 29, 615–628. https://doi.org/10.1111/geb.13059 (2020).

    Article 

    Google Scholar 

  • Lindenmayer, D. Small patches make critical contributions to biodiversity conservation. Proc. Natl. Acad. Sci. 116, 717–719. https://doi.org/10.1073/pnas.182016911 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, Y. et al. Small patches are hotspots for biodiversity conservation in fragmented landscapes. Ecol. Ind. 130, 108086. https://doi.org/10.1016/j.ecolind.2021.108086 (2021).

    Article 

    Google Scholar 




  • Source link

    Previous Article

    "I've been acting my entire life": Tan France on why pretending to be someone else feels familiar

    Next Article

    Migrants held at Guantanamo transferred to US, Pentagon confirms

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨