Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).
Google Scholar
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci. Adv. 1, e1500052. https://doi.org/10.1126/sciadv.150005 (2015).
Google Scholar
Lindenmayer, D. B. & Fischer, J. Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis (Island Press, 2013).
Janin, A., Léna, J.-P. & Joly, P. Habitat fragmentation affects movement behavior of migrating juvenile common toads. Behav. Ecol. Sociobiol. 66, 1351–1356. https://doi.org/10.1007/s00265-012-1390-8 (2012).
Google Scholar
Rybicki, J., Abrego, N. & Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 23, 506–517. https://doi.org/10.1111/ele.13450 (2020).
Google Scholar
Gray, J. S. Marine biodiversity: patterns, threats and conservation needs. Biodivers. Conserv. 6, 153–175. https://doi.org/10.1023/A:1018335901847 (1997).
Google Scholar
Wilson, M. C. et al. Habitat Fragmentation and Biodiversity Conservation: Key Findings and Future Challenges. https://doi.org/10.1007/s10980-015-0312-3 (2016).
van Nouhuys, S. Effects of habitat fragmentation at different trophic levels in insect communities. In Annales Zoologici Fennici 433–447 (JSTOR, 2005).
Pierri-Daunt, A. B. & Tanaka, M. O. Assessing habitat fragmentation on marine epifaunal macroinvertebrate communities: an experimental approach. Landscape Ecol. 29, 17–28. https://doi.org/10.1007/s10980-013-9970-1 (2014).
Google Scholar
Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790. https://doi.org/10.1073/pnas.160610211 (2016).
Google Scholar
Murray, N. J. et al. High-resolution mapping of losses and gains of earth’s tidal wetlands. Science 376, 744–749. https://doi.org/10.1126/science.abm95 (2022).
Google Scholar
Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381. https://doi.org/10.1073/pnas.0905620106 (2009).
Google Scholar
Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855. https://doi.org/10.1111/gcb.15275 (2020).
Google Scholar
Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285. https://doi.org/10.1016/j.oneear.2021.08.016 (2021).
Google Scholar
Gross, A. et al. Fragmentation as a key driver of tree community dynamics in mixed subtropical evergreen forests in southern brazil. For. Ecol. Manage. 411, 20–26. https://doi.org/10.1016/j.foreco.2018.01.013 (2018).
Google Scholar
Ries, L., Fletcher, R. J. Jr., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522. https://doi.org/10.1146/annurev.ecolsys.35.112202.130148 (2004).
Google Scholar
Ewers, R. M., Thorpe, S. & Didham, R. K. Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88, 96–106. https://doi.org/10.1890/0012-9658(2007)88[96:sibeaa]2.0.co;2 (2007).
Google Scholar
Yarnall, A. H., Byers, J. E., Yeager, L. A. & Fodrie, F. J. Comparing edge and fragmentation effects within seagrass communities: a meta-analysis. Ecology 103, e3603. https://doi.org/10.1002/ecy.3603 (2022).
Google Scholar
Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. B 375, 20190454. https://doi.org/10.1098/rstb.2019.0454 (2020).
Google Scholar
Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5, 18–32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x (1991).
Google Scholar
Whippo, R. et al. Epifaunal diversity patterns within and among seagrass meadows suggest landscape-scale biodiversity processes. Ecosphere 9, e02490. https://doi.org/10.1002/ecs2.2490 (2018).
Google Scholar
Boström, C., Jackson, E. L. & Simenstad, C. A. Seagrass landscapes and their effects on associated fauna: a review. Estuar. Coast. Shelf Sci. 68, 383–403. https://doi.org/10.1016/j.ecss.2006.01.026 (2006).
Google Scholar
Hovel, K. A. & Fonseca, M. S. Influence of seagrass landscape structure on the juvenile blue crab habitat-survival function. Mar. Ecol. Prog. Ser. 300, 179–191. https://doi.org/10.3354/meps300179 (2005).
Google Scholar
Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25. https://doi.org/10.1016/j.jembe.2017.01.007 (2018).
Google Scholar
Duplá, M. V. Dynamics of a macrophyte-driven coastal ecotone: underlying factors and ecological implications. Estuar. Coast. Shelf Sci. 259, 107481. https://doi.org/10.1016/j.ecss.2021.107481 (2021).
Google Scholar
Zabarte-Maeztu, I. et al. Effects of fine sediment on seagrass meadows: a case study of Zostera muelleri in pāuatahanui inlet, new zealand. J. Mar. Sci. Eng. 8, 645. https://doi.org/10.3390/jmse8090645 (2020).
Google Scholar
Riera, R. et al. Severe shifts of Zostera marina epifauna: comparative study between 1997 and 2018 on the swedish skagerrak coast. Mar. Pollut. Bull. 158, 111434. https://doi.org/10.1016/j.marpolbul.2020.111434 (2020).
Google Scholar
Boudreau, B. P. & Jorgensen, B. B. The Benthic Boundary Layer: Transport Processes and Biogeochemistry (Oxford University Press, 2001).
Lindsay, S. M. Frequency of injury and the ecology of regeneration in marine benthic invertebrates. Integr. Comp. Biol. 50, 479–493. https://doi.org/10.1093/icb/icq099 (2010).
Google Scholar
Dauvin, J.-C. et al. An approach to validating simple benthic indicators: polychaete/amphipod ratios. Ecol. Ind. 63, 89–99. https://doi.org/10.1016/j.ecolind.2015.11.055 (2016).
Google Scholar
Ieno, E. N., Solan, M., Batty, P. & Pierce, G. J. How biodiversity affects ecosystem functioning: roles of infaunal species richness, identity and density in the marine benthos. Mar. Ecol. Prog. Ser. 311, 263–271 (2006).
Google Scholar
Bell, S. S., Brooks, R. A., Robbins, B. D., Fonseca, M. S. & Hall, M. O. Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biol. Cons. 100, 115–123. https://doi.org/10.1016/S0006-3207(00)00212-3 (2001).
Google Scholar
Vonk, J. A., Christianen, M. J. & Stapel, J. Abundance, edge effect, and seasonality of fauna in mixed-species seagrass meadows in southwest sulawesi, indonesia. Mar. Biol. Res. 6, 282–291. https://doi.org/10.1080/17451000903233789 (2010).
Google Scholar
Warry, F., Hindell, J., Macreadie, P., Jenkins, G. & Connolly, R. Integrating edge effects into studies of habitat fragmentation: a test using meiofauna in seagrass. Oecologia 159, 883–892. https://doi.org/10.1007/s00442-008-1258-9 (2009).
Google Scholar
Baden, S., Gullström, M., Lundén, B., Pihl, L. & Rosenberg, R. Vanishing seagrass (Zostera marina, l.) in swedish coastal waters. AMBIO J. Hum. Env. 32, 374–377. https://doi.org/10.1579/0044-7447-32.5.374 (2003).
Google Scholar
Bender, D. J., Tischendorf, L. & Fahrig, L. Using patch isolation metrics to predict animal movement in binary landscapes. Landscape Ecol. 18, 17–39. https://doi.org/10.1023/A:1022937226820 (2003).
Google Scholar
Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663. https://doi.org/10.1111/jbi.12130 (2013).
Google Scholar
Pierrejean, M., Cusson, M. & Rossi, F. Seasonal effects of edge and habitat complexity on eelgrass epifaunal assemblages. Mar. Ecol. Prog. Ser. 718, 39–52. https://doi.org/10.3354/meps14385 (2023).
Google Scholar
Oksanen, J. Design decisions and implementation details in vegan. Vignette of the package vegan. R package version, vol. 2016 2–4 (2016).
Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology (2023). R package version 2.1-0.
Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund-an r package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474. https://doi.org/10.1111/j.2041-210X.2012.00190.x (2012).
Google Scholar
Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101. https://doi.org/10.1111/j.2041-210X.2011.00127.x (2012).
Google Scholar
Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data (2022). R package version 4.2.1.
Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324. https://doi.org/10.1146/annurev-ecolsys-120213-091540 (2014).
Google Scholar
Bosch, N. E. et al. Niche and neutral assembly mechanisms contribute to latitudinal diversity gradients in reef fishes. J. Biogeogr. 48, 2683–2698. https://doi.org/10.1111/jbi.14237 (2021).
Google Scholar
Li, D. Hillr: taxonomic, functional, and phylogenetic diversity and similarity through hill numbers. J. Open Sourc. Softw. 3, 1041. https://doi.org/10.21105/joss.01041 (2018).
Google Scholar
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. https://doi.org/10.32614/RJ-2017-066 (2017).
Google Scholar
Tanner, J. E. Edge effects on fauna in fragmented seagrass meadows. Austral Ecol. 30, 210–218. https://doi.org/10.1111/j.1442-9993.2005.01438.x (2005).
Google Scholar
Sweatman, J. L., Layman, C. A. & Fourqurean, J. W. Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed. Mar. Environ. Res. 126, 95–108. https://doi.org/10.1016/j.marenvres.2017.02.003 (2017).
Google Scholar
La Manna, G., Donno, Y., Sarà, G. & Ceccherelli, G. The detrimental consequences for seagrass of ineffective marine park management related to boat anchoring. Mar. Pollut. Bull. 90, 160–166. https://doi.org/10.1016/j.marpolbul.2014.11.001 (2015).
Google Scholar
Iacarella, J. C. et al. Anthropogenic disturbance homogenizes seagrass fish communities. Glob. Change Biol. 24, 1904–1918. https://doi.org/10.1111/gcb.14090 (2018).
Google Scholar
Blanco-Murillo, F. et al. Posidonia oceanica l (delile) meadows regression: long-term affection may be induced by multiple impacts. Mar. Environ. Res. 174, 105557. https://doi.org/10.1016/j.marenvres.2022.105557 (2022).
Google Scholar
Swadling, D. S., West, G. J., Gibson, P. T., Laird, R. J. & Glasby, T. M. Don’t go breaking apart: Anthropogenic disturbances predict meadow fragmentation of an endangered seagrass. Aquat. Conserv. Mar. Freshwat. Ecosyst. 33, 56–69. https://doi.org/10.1002/aqc.3905 (2023).
Google Scholar
Moore, E. C. & Hovel, K. A. Relative influence of habitat complexity and proximity to patch edges on seagrass epifaunal communities. Oikos 119, 1299–1311. https://doi.org/10.1111/j.1600-0706.2009.17909.x (2010).
Google Scholar
Reed, B. J. & Hovel, K. A. Seagrass habitat disturbance: how loss and fragmentation of eelgrass Zostera marina influences epifaunal abundance and diversity. Mar. Ecol. Prog. Ser. 326, 133–143. https://doi.org/10.3354/meps326133 (2006).
Google Scholar
Micheli, F., Bishop, M. J., Peterson, C. H. & Rivera, J. Alteration of seagrass species composition and function over two decades. Ecol. Monogr. 78, 225–244 (2008).
Google Scholar
Riva, F. & Fahrig, L. Landscape-scale habitat fragmentation is positively related to biodiversity, despite patch-scale ecosystem decay. Ecol. Lett. 26, 268–277. https://doi.org/10.1111/ele.14145 (2023).
Google Scholar
Fahrig, L. Patch-scale edge effects do not indicate landscape-scale fragmentation effects. Conserv. Lett. 17, e12992. https://doi.org/10.1111/conl.12992 (2024).
Google Scholar
Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243. https://doi.org/10.1038/s41586-020-2531-2 (2020).
Google Scholar
Riva, F. & Fahrig, L. The disproportionately high value of small patches for biodiversity conservation. Conserv. Lett. 15, e12881. https://doi.org/10.1111/conl.12881 (2022).
Google Scholar
Fahrig, L. Why do several small patches hold more species than few large patches?. Glob. Ecol. Biogeogr. 29, 615–628. https://doi.org/10.1111/geb.13059 (2020).
Google Scholar
Lindenmayer, D. Small patches make critical contributions to biodiversity conservation. Proc. Natl. Acad. Sci. 116, 717–719. https://doi.org/10.1073/pnas.182016911 (2019).
Google Scholar
Yan, Y. et al. Small patches are hotspots for biodiversity conservation in fragmented landscapes. Ecol. Ind. 130, 108086. https://doi.org/10.1016/j.ecolind.2021.108086 (2021).
Google Scholar