High-speed computed tomography to visualise the 3D microstructural dynamics of oil uptake in deep-fried foods

High-speed computed tomography to visualise the 3D microstructural dynamics of oil uptake in deep-fried foods


  • Gamble, M. H., Rice, P. & Selman, J. D. Relationship between oil uptake and moisture loss during frying of potato slices from c. v. Record U.K. tubers. Int. J. Food Sci. Technol. 22, 233–241 (1987).

    Article 

    Google Scholar 

  • Ziaiifar, A. M., Achir, N., Courtois, F., Trezzani, I. & Trystram, G. Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. Int. J. Food Sci. Technol. 43, 1410–1423 (2008).

    Article 
    CAS 

    Google Scholar 

  • U.S. Department of Agriculture, A. R. S. USDA Food and Nutrient Database for Dietary Studies 2019-2020. (2022).

  • Dana, D. & Saguy, I. S. Review: Mechanism of oil uptake during deep-fat frying and the surfactant effect-theory and myth. Adv. Colloid Interface Sci 128–130, 267–272 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Hooper, L. et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2020, (2020).

  • Hooper, L., Abdelhamid, A. S., Jimoh, O. F., Bunn, D. & Skeaff, C. M. Effects of total fat intake on body fatness in adults. Cochrane Database Syst. Rev. 2020, CD013636 (2020).

  • Mottram, D. S., Wedzicha, B. L. & Dodson, A. T. Acrylamide is formed in the Maillard reaction. Nature 419, 448–449 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • World Health Organization. Total Fat Intake for the Prevention of Unhealthy Weight Gain in Adults and Children. (2023).

  • Pagliai, G. et al. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br. J. Nutr. 125, 308–318 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Monteiro, C. A., Moubarac, J. ‐C., Cannon, G., Ng, S. W. & Popkin, B. Ultra‐processed products are becoming dominant in the global food system. Obes. Rev. 14, 21–28 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Vitrac, O., Trystram, G. & Raoult-Wack, A. L. Deep-fat frying of food: Heat and mass transfer, transformations and reactions inside the frying material. Eur. J. Lipid Sci. Technol. 102, 529–538 (2000).

    Article 
    CAS 

    Google Scholar 

  • Moreira, R. G., Sun, X. & Chen, Y. Factors affecting oil uptake in tortilla chips in deep-fat frying. J. Food Eng. 31, 485–498 (1997).

    Article 
    MATH 

    Google Scholar 

  • Alam, T. & Takhar, P. S. Microstructural characterization of fried potato disks using x‐ray micro computed tomography. J. Food Sci. 81, E651–E664 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Riley, I. M. et al. Impact of potato starch structural transitions on microstructure development during deep-frying. Food Hydrocoll 142, 108833 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Bouchon, P., Aguilera, J. M. & Pyle, D. L. Structure Oil-Absorption Relationships during Deep-Fat Frying. J. Food Sci. 68, 2711–2716 (2003).

    Article 
    CAS 

    Google Scholar 

  • Ufheil, G. & Escher, F. Dynamics of oil uptake during deep-fat frying of potato slices. Lwt 29, 640–644 (1996).

    Article 
    CAS 

    Google Scholar 

  • Dueik, V., Moreno, M. C. & Bouchon, P. Microstructural approach to understand oil absorption during vacuum and atmospheric frying. J. Food Eng. 111, 528–536 (2012).

    Article 
    CAS 

    Google Scholar 

  • Moreno, M. C., Brown, C. A. & Bouchon, P. Effect of food surface roughness on oil uptake by deep-fat fried products. J. Food Eng. 101, 179–186 (2010).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Baumann, B. & Escher, F. Mass and heat transfer during deep-fat frying of potato slices -I. rate of drying and oil uptake. LWT – Food Sci. Technol. 28, 395–403 (1995).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Albert, S. & Mittal, G. S. Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product. Food Res. Int. 35, 445–458 (2002).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Liberty, J. T., Dehghannya, J. & Ngadi, M. O. Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends Food Sci. Technol. 92, 172–183 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ziaiifar, A. M., Courtois, F. & Trystram, G. Porosity development and its effect on oil uptake during frying process. J. Food Process Eng. 33, 191–212 (2010).

    Article 

    Google Scholar 

  • Halder, A., Dhall, A. & Datta, A. K. An improved, easily implementable, porous media based model for deep-fat frying. Part II: Results, validation and sensitivity analysis. Food Bioprod. Process. 85, 220–230 (2007).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J., Liu, Y. & Fan, L. Effect of pore characteristics on oil absorption behavior during frying of potato chips. Innov. Food Sci. Emerg. Technol. 66, 102508 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Kalogianni, E. P. & Papastergiadis, E. Crust pore characteristics and their development during frying of French-fries. J. Food Eng. 120, 175–182 (2014).

    Article 

    Google Scholar 

  • Moreira, R. G. & Barrufet, M. A. A new approach to describe oil absorption in fried foods: a simulation study. J. Food Eng. 35, 1–22 (1998).

    Article 
    MATH 

    Google Scholar 

  • Zhang, T., Li, J., Ding, Z. & Fan, L. Effects of initial moisture content on the oil absorption behavior of potato chips during frying process. Food Bioprocess Technol 9, 331–340 (2016).

    Article 
    CAS 

    Google Scholar 

  • Reyniers, S. et al. Amylose molecular fine structure dictates water–oil dynamics during deep-frying and the caloric density of potato crisps. Nat. Food 1, 736–745 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Gazmuri, A. M. & Bouchon, P. Analysis of wheat gluten and starch matrices during deep-fat frying. Food Chem 115, 999–1005 (2009).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Liu, Y., Tian, J., Zhang, T. & Fan, L. Effects of frying temperature and pore profile on the oil absorption behavior of fried potato chips. Food Chem 345, 128832 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Touffet, M., Trystram, G. & Vitrac, O. Revisiting the mechanisms of oil uptake during deep-frying. Food Bioprod. Process. 123, 14–30 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Jekle, M., Mühlberger, K. & Becker, T. Starch-gluten interactions during gelatinization and its functionality in dough like model systems. Food Hydrocoll 54, 196–201 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Thanatuksorn, P., Kajiwara, K. & Suzuki, T. Characterization of deep-fat frying in a wheat flour–water mixture model using a state diagram. J. Sci. Food Agric. 87, 2648–2656 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, Z. et al. Effects of thermal properties and behavior of wheat starch and gluten on their interaction: a review. Int. J. Biol. Macromol. 177, 474–484 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Chen, L. et al. Comprehensive investigation and comparison of surface microstructure of fractionated potato starches. Food Hydrocoll 89, 11–19 (2019).

    Article 
    MATH 

    Google Scholar 

  • Li, W. et al. Low and high methoxyl pectin lowers on structural change and digestibility of fried potato starch. LWT 132, 109853 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Aguilera, J. M., Cadoche, L., Loópez, C. & Gutierrez, G. Microstructural changes of potato cells and starch granules heated in oil. Food Res. Int. 34, 939–947 (2001).

    Article 

    Google Scholar 

  • Kawas, M. L. & Moreira, R. G. Characterization of product quality attributes of tortilla chips during the frying process. J. Food Eng. 47, 97–107 (2001).

    Article 

    Google Scholar 

  • Bouchon, P. & Aguilera, J. M. Microstructural analysis of frying potatoes. Int. J. Food Sci. Technol. 36, 669–676 (2001).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Dhital, S., Baier, S. K., Gidley, M. J. & Stokes, J. R. Microstructural properties of potato chips. Food Struct 16, 17–26 (2018).

    Article 

    Google Scholar 

  • Aguilera, J. M. Why food micro structure? J. Food Eng. 67, 3–11 (2005).

    Article 
    MATH 

    Google Scholar 

  • Dehghannya, J. & Ngadi, M. Recent advances in microstructure characterization of fried foods: different frying techniques and process modeling. Trends Food Sci. Technol. 116, 786–801 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yang, D., Wu, G., Li, P., Zhang, H. & Qi, X. Comparative analysis of the oil absorption behavior and microstructural changes of fresh and pre-frozen potato strips during frying via MRl, SEM, and XRD. Food Res. Int. 122, 295–302 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, P. et al. Effect of multistage process on the quality, water and oil distribution and microstructure of French fries. Food Res. Int. 137, 109229 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Contardo, I., James, B. & Bouchon, P. Microstructural characterization of vacuum-fried matrices and their influence on starch digestion. Food Struct 25, 100146 (2020).

    Article 

    Google Scholar 

  • Dewanckele, J., Boone, M. A., Coppens, F., van Loo, D. & Merkle, A. P. Innovations in laboratory-based dynamic micro-CT to accelerate in situ research. J. Microsc. 277, 197–209 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Withers, P. J. et al. X-ray computed tomography. Nat. Rev. Methods Prim. 1, 18 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Turbin-Orger, A. et al. Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: The evolution of cellular structures in fermenting wheat flour dough. Soft Matter 11, 3373–3384 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Schott, F. et al. Structural formation during bread baking in a combined microwave-convective oven determined by sub-second in-situ synchrotron X-ray microtomography. Food Res. Int. 173, 113283 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Gruber, S. et al. Pore shape matters – In-situ investigation of freeze-drying kinetics by 4D XCT methods. Food Res. Int. 193, 114837 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Patsioura, A. et al. Microscopic imaging of biphasic oil‐air flow in <scp>F</scp> rench fries using synchrotron radiation. AIChE J. 61, 1427–1446 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Blankenburg, C., Rack, A., Daul, C. & Ohser, J. Torsion estimation of particle paths through porous media observed by in-situ time-resolved microtomography. J. Microsc. 266, 141–152 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Piovesan, A. et al. 4D synchrotron microtomography and pore-network modelling for direct in situ capillary flow visualization in 3D printed microfluidic channels. Lab Chip 20, 2403–2411 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Delcour, J. A. & Hoseney, R. C. Principles of Cereal Science and Technology. (AACC International, 2010).

  • Farkas, B. E., Singh, R. P. & Rumsey, T. R. Modeling heat and mass transfer in immersion frying. I, model development. J. Food Eng. 29, 211–226 (1996).

    Article 
    MATH 

    Google Scholar 

  • Mondal, A. & Datta, A. K. Bread baking – A review. J. Food Eng. 86, 465–474 (2008).

    Article 
    MATH 

    Google Scholar 

  • Ni, H. & Datta, A. K. Moisture, oil and energy transport during deep-fat frying of food materials. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 77, 194–204 (1999).

    Article 
    MATH 

    Google Scholar 

  • Reyniers, S., Ooms, N. & Delcour, J. A. Transformations and functional role of starch during potato crisp making: A review. J. Food Sci. 85, 4118–4129 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Riley, I. M., Verma, U., Verboven, P., Nicolai, B. M. & Delcour, J. A. Wheat gluten structure and (non–)covalent network formation during deep-fat frying. Food Res. Int. 188, 114503 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berg, S. et al. Ilastik: interactive machine learning for (Bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Sandhu, J., Bansal, H. & Takhar, P. S. Experimental measurement of physical pressure in foods during frying. J. Food Eng. 115, 272–277 (2013).

    Article 

    Google Scholar 

  • HUBBARD, L. J. & FARKAS, B. E. Influence of oil temperature on convective heat transfer during immersion frying. J. Food Process. Preserv. 24, 143–162 (2000).

    Article 
    MATH 

    Google Scholar 

  • van der Sman, R. G. M. & van der Goot, A. J. The science of food structuring. Soft Matter 5, 501–510 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Tengattini, A. et al. NeXT-Grenoble, the Neutron and X-ray tomograph in Grenoble. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 968, 163939 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nemati, A., Lukić, B., Tengattini, A., Briffaut, M. & Séchet, P. Water vapor condensation in porous media: effects of fracture, porosity, and flow rate revealed by rapid 4D neutron imaging. Adv. Water Resour. 195, 104872 (2025).

    Article 
    CAS 

    Google Scholar 

  • Asimakopoulou, E. M. et al. Development towards high-resolution kHz-speed rotation-free volumetric imaging. Opt. Express 32, 4413 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mittone, A. et al. Multiscale pink-beam microCT imaging at the ESRF-ID17 biomedical beamline. J. Synchrotron Radiat. 27, 1347–1357 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Aguilera, J. M. Food structure revisited. Trends Food Sci. Technol. 147, 104459 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Schoeman, L., Williams, P., du Plessis, A. & Manley, M. X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure. Trends Food Sci. Technol. 47, 10–24 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Archana, R. & Jeevaraj, P. S. E. Deep learning models for digital image processing: a review. Artif. Intell. Rev. 57, 11 (2024).

    Article 
    MATH 

    Google Scholar 

  • Zhang, J., Li, J. & Fan, L. Comparative analysis of oil absorption and microstructure of fried potato chips treated with different pretreatment via X-ray micro-computed tomography and mercury intrusion method. J. Food Compos. Anal. 129, 106129 (2024).

    Article 
    CAS 

    Google Scholar 

  • Xue, S. et al. Comparison of mercury intrusion porosimetry and multi-scale X-ray CT on characterizing the microstructure of heat-treated cement mortar. Mater. Charact. 160, 110085 (2020).

  • Contardo, I. & Bouchon, P. Enhancing Micro-CT methods to quantify oil content and porosity in starch-gluten matrices. J. Food Eng. 237, 154–161 (2018).

    Article 
    CAS 

    Google Scholar 

  • Bouchon, P. & Pyle, D. L. Modelling oil absorption during post-frying cooling II: solution of the mathematical model, model testing and simulations. Food Bioprod. Process. 83, 261–272 (2005).

    Article 
    MATH 

    Google Scholar 

  • Datta, A. et al. Computer-aided food engineering. Nat. Food 3, 894–904 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Aladedunye, F. A. & Przybylski, R. Degradation and Nutritional Quality Changes of Oil During Frying. J. Am. Oil Chem. Soc. 86, 149–156 (2009).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on acrylamide in food. EFSA J. 13, (2015).

  • Zhang, J., Li, J. & Fan, L. Application of innovative techniques in modifying microstructures and reducing oil uptake of fried food: A review. Food Res. Int. 196, 115049 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumari, A., Bhattacharya, B., Agarwal, T., Paul, V. & Chakkaravarthi, S. Integrated approach towards acrylamide reduction in potato-based snacks: A critical review. Food Res. Int. 156, 111172 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weitkamp, T. et al. Status and evolution of the ESRF beamline ID19. in X-ray Optics and Microanalysis: Proceedings of the 20th International Congress 33–38 (AIP Publishing, Karlsruhe, 2010).

  • Douissard, P. A. et al. A versatile indirect detector design for hard X-ray microimaging. J. Instrum. 7, P09016–P09016 (2012).

    Article 
    MATH 

    Google Scholar 

  • Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jackson, D. F. & Hawkes, D. J. X-ray attenuation coefficients of elements and mixtures. Phys. Rep. 70, 169–233 (1981).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Maire, E. & Withers, P. J. Quantitative X-ray tomography. Int. Mater. Rev. 59, 1–43 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Riley, I. M., Nivelle, M. A., Ooms, N. & Delcour, J. A. The use of time domain 1 H NMR to study proton dynamics in starch‐rich foods: A review. Compr. Rev. Food Sci. Food Saf. 21, 4738–4775 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Schlüter, S., Sheppard, A., Brown, K. & Wildenschild, D. Image processing of multiphase images obtained via X‐ray microtomography: A review. Water Resour. Res. 50, 3615–3639 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kerckhofs, G., Schrooten, J., Van Cleynenbreugel, T., Lomov, S. V. & Wevers, M. Validation of x-ray microfocus computed tomography as an imaging tool for porous structures. Rev. Sci. Instrum. 79, 013711 (2008).

  • Hildebrand, T. & Rüegsegger, P. A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67–75 (1997).

    Article 
    MATH 

    Google Scholar 

  • Moisture-Air-Oven Methods. in AACC International Approved Methods (AACC International, 2009).

  • Verma, U., Riley, I. M., Verboven, P. & Nicolaï, B. M. In situ visualization of fluid flow during deep-fat frying process using ultrafast synchrotron microtomography. ERSF data repository https://doi.org/10.15151/ESRF-ES-930328408 (2025).

    Article 

    Google Scholar 

  • Verma, U., Riley, I. M., Verboven, P. & Nicolaï, B. M. Supporting data. Zenodo https://doi.org/10.5281/zenodo.14507722 (2025).

    Article 
    MATH 

    Google Scholar 




  • Source link

    Previous Article

    ECB’s Villeroy says U.S. crypto support will lead to a financial crisis

    Next Article

    Leading sex-abuse litigator suing women's sports advocate — it's a tangled tale

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨