Discovering the dynamics of peach fruit mycobiome throughout fruit development season by high-throughput sequencing

Discovering the dynamics of peach fruit mycobiome throughout fruit development season by high-throughput sequencing


  • Cui, L., Morris, A. & Ghedin, E. The human mycobiome in health and disease. Genome Med. 5(7), 63. https://doi.org/10.1186/gm467 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kariman, K., Barker, S. J. & Tibbett, M. Structural plasticity in root-fungal symbioses: Diverse interactions lead to improved plant fitness. PeerJ 6, e6030. https://doi.org/10.7717/peerj.6030 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Fungi-nematode interactions: Diversity, ecology, and biocontrol prospects in agriculture. J. Fungi 6(4), 206. https://doi.org/10.3390/jof6040206 (2020).

    Article 

    Google Scholar 

  • Dighton, J. Fungi in Ecosystem Processes (CRC Press eBooks, 2018). https://doi.org/10.1201/9781315371528.

    Book 

    Google Scholar 

  • Moënne-Loccoz, Y., Mavingui, P., Combes, C. & Steinberg, C. Microorganisms and Biotic Interactions. 395–444 (Springer eBooks, 2014). https://doi.org/10.1007/978-94-017-9118-2_11

  • Nilsson, R. H. et al. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 17(2), 95–109. https://doi.org/10.1038/s41579-018-0116-y (2018).

    Article 
    CAS 

    Google Scholar 

  • Tiew, P. Y. et al. The mycobiome in health and disease: Emerging concepts, methodologies and challenges. Mycopathologia 5, 156. https://doi.org/10.1007/s11046-019-00413-z (2020).

    Article 
    CAS 

    Google Scholar 

  • Porras-Alfaro, A. & Bayman, P. Hidden fungi, emergent properties: Endophytes and microbiomes. Annu. Rev. Phytopathol. 49(1), 291–315. https://doi.org/10.1146/annurev-phyto-080508-081831 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vignassa, M. et al. Pineapple mycobiome related to fruitlet core rot occurrence and the influence of fungal species dispersion patterns. J. Fungi 7(3), 175. https://doi.org/10.3390/jof7030175 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pozo, M. J., Zabalgogeazcoa, I., De Aldana, B. R. V. & Martinez-Medina, A. Untapping the potential of plant mycobiomes for applications in agriculture. Curr. Opin. Plant Biol. 60, 102034. https://doi.org/10.1016/j.pbi.2021.102034 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bösch, Y. et al. Dynamics of the apple fruit microbiome after harvest and implications for fruit quality. Microorganisms 9(2), 272. https://doi.org/10.3390/microorganisms9020272 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Setati, M. E., Jacobson, D. & Bauer, F. F. Sequence-based analysis of the Vitis vinifera L. cv cabernet sauvignon grape must mycobiome in three South African vineyards employing distinct agronomic systems. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01358 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Szymanski, S. et al. The blueberry fruit mycobiome varies by tissue type and fungicide treatment. Phytobiomes J. 7(2), 208–219. https://doi.org/10.1094/pbiomes-04-22-0028-fi (2023).

    Article 

    Google Scholar 

  • Piombo, E. et al. Characterizing the fungal microbiome in date (Phoenix dactylifera) fruit pulp and peel from early development to harvest. Microorganisms 8(5), 641. https://doi.org/10.3390/microorganisms8050641 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bill, M., Viljoen, F., Chidamba, L., Gokul, J. & Korsten, L. Fungal microbiome shifts of avocado fruit from flowering to the ready-to-eat stage. Acta Hortic. 1363, 59–68. https://doi.org/10.17660/actahortic.2023.1363.9 (2023).

    Article 

    Google Scholar 

  • TURKSTAT, Turkish Statistical Institute. Accessed 9 June 2024; https://www.tuik.gov.tr/. (2023).

  • Bayav, A. & Çetinbaş, M. Peach production and foreign trade of Turkey: Current situation, forecasting and analysis of competitiveness. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi 31(2), 212–225. https://doi.org/10.18615/anadolu.1033597 (2021).

    Article 

    Google Scholar 

  • Ozkilinc, H. et al. Species diversity, mating type assays and aggressiveness patterns of Monilinia pathogens causing brown rot of peach fruit in Turkey. Eur. J. Plant Pathol. 157(4), 799–814. https://doi.org/10.1007/s10658-020-02040-7 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jo, Y., Back, C. G., Choi, H. & Cho, W. K. Comparative microbiome study of mummified peach fruits by metagenomics and metatranscriptomics. Plants 9(8), 1052. https://doi.org/10.3390/plants9081052 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bien, S. & Damm, U. Prunus trees in Germany—A hideout of unknown fungi?. Mycol. Progress 19(7), 667–690. https://doi.org/10.1007/s11557-020-01586-4 (2020).

    Article 

    Google Scholar 

  • Ren, N., Dong, N. & Yan, N. Organs, cultivars, soil, and fruit properties affect structure of endophytic mycobiota of pinggu peach trees. Microorganisms 7(9), 322. https://doi.org/10.3390/microorganisms7090322 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newberger, D. R., Minas, I. S., Manter, D. K. & Vivanco, J. M. A microbiological approach to alleviate soil replant syndrome in peaches. Microorganisms 11(6), 1448. https://doi.org/10.3390/microorganisms11061448 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoist-Jensen, A., Vaage, M. & Schumacher, T. An approximation to the phylogeny of Sclerotinia and related genera. Nord. J. Bot. 18(6), 705–719. https://doi.org/10.1111/j.1756-1051.1998.tb01553.x (1998).

    Article 

    Google Scholar 

  • Gdanetz, K. & Trail, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J. 1(3), 158–168. https://doi.org/10.1094/pbiomes-05-17-0023-r (2017).

    Article 

    Google Scholar 

  • Paiva, D. S. et al. Uncovering the fungal diversity colonizing limestone walls of a forgotten monument in the central region of Portugal by high-throughput sequencing and culture-based methods. Appl. Sci. 12(20), 10650. https://doi.org/10.3390/app122010650 (2022).

    Article 
    CAS 

    Google Scholar 

  • Purahong, W. et al. Characterization of unexplored deadwood mycobiome in highly diverse subtropical forests using culture-independent molecular technique. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00574 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wijayawardene, N. N. et al. Current insight into culture-dependent and culture-independent methods in discovering ascomycetous taxa. J. Fungi 7(9), 703. https://doi.org/10.3390/jof7090703 (2021).

    Article 
    CAS 

    Google Scholar 

  • Durak, M. R., Arslan, K., Silan, E., Yildiz, G. & Ozkilinc, H. A novel approach for in vitro fungicide screening and the sensitivity of Monilinia populations from peach orchards in Turkey to respiratory inhibitor fungicides. Crop Prot. 147, 105688. https://doi.org/10.1016/j.cropro.2021.105688 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poniatowska, A., Michalecka, M. & Puławska, J. Genetic diversity and pathogenicity of Monilinia polystroma—The new pathogen of cherries. Plant Pathol. 65(5), 723–733. https://doi.org/10.1111/ppa.12463 (2015).

    Article 

    Google Scholar 

  • Zhu, X. Q. & Guo, L. Y. First report of brown rot on plum caused by Monilinia polystroma in China. Plant Disease 94(4), 478. https://doi.org/10.1094/pdis-94-4-0478a (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vasić, M., Duduk, N. & Ivanović, M. S. First report of brown rot caused by Monilia polystroma on apple in Serbia. Plant Disease 97(1), 145. https://doi.org/10.1094/pdis-07-12-0670-pdn (2013).

    Article 
    PubMed 

    Google Scholar 

  • Deltedesco, E., Oettl, S. & Spitaler, U. First report of brown rot caused by Monilinia polystroma on sweet cherry and almond in Italy. Plant Disease 107(7), 2252. https://doi.org/10.1094/pdis-10-22-2482-pdn (2023).

    Article 

    Google Scholar 

  • Spitaler, U., Oettl, S. & Deltedesco, E. First report of brown rot caused by Monilinia polystroma on quince in Italy. Plant Disease 107(1), 229. https://doi.org/10.1094/pdis-06-22-1442-pdn (2023).

    Article 

    Google Scholar 

  • Gautam, A. K. et al. Current insight into traditional and modern methods in fungal diversity estimates. J. Fungi 8(3), 226. https://doi.org/10.3390/jof8030226 (2022).

    Article 

    Google Scholar 

  • Polonio, L., Seoane, P., Claros, M. G. & Pérez-García, A. The haustorial transcriptome of the cucurbit pathogen Podosphaera xanthii reveals new insights into the biotrophy and pathogenesis of powdery mildew fungi. BMC Genom. https://doi.org/10.1186/s12864-019-5938-0 (2019).

    Article 

    Google Scholar 

  • Prusky, D. & Romanazzi, G. Induced resistance in fruit and vegetables: A host physiological response limiting postharvest disease development. Annu. Rev. Phytopathol. 61(1), 279–300. https://doi.org/10.1146/annurev-phyto-021722-035135 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bahram, M. & Netherway, T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuab058 (2021).

    Article 
    PubMed Central 

    Google Scholar 

  • Liu, X. & Zhang, Z. A double-edged sword: reactive oxygen species (ROS) during the rice blast fungus and host interaction. FEBS J. 289(18), 5505–5515. https://doi.org/10.1111/febs.16171 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanson, M., Petch, G., Ottosen, T. & Skjøth, C. Climate change impact on fungi in the atmospheric microbiome. Sci. Total Environ. 830, 154491. https://doi.org/10.1016/j.scitotenv.2022.154491 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. Elevated CO2 and temperature increase arbuscular mycorrhizal fungal diversity, but decrease root colonization, in maize and wheat. Sci. Total Environ. 873, 162321. https://doi.org/10.1016/j.scitotenv.2023.162321 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han, L. et al. Deciphering the diversity, composition, function, and network complexity of the soil microbial community after repeated exposure to a fungicide boscalid. Environ. Pollut. 312, 120060. https://doi.org/10.1016/j.envpol.2022.120060 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sumbula, V., Kurian, P. S., Girija, D. & Cherian, K. A. Impact of foliar application of fungicides on tomato leaf fungal community structure revealed by metagenomic analysis. Folia Microbiologica 67(1), 103–108. https://doi.org/10.1007/s12223-021-00920-x (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verde, I. et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45(5), 487–494. https://doi.org/10.1038/ng.2586 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geneious 9.1.8. https://www.geneious.com

  • White, T., Bruns, T., Lee, S., & Taylor, J. Amplıfıcatıon and dırect sequencıng of fungal rıbosomal RNA genes for phylogenetıcs. 315–322 (Elsevier eBooks, 1990b). https://doi.org/10.1016/b978-0-12-372180-8.50042-1

  • Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2(2), 113–118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jo, T., Takao, K. & Minamoto, T. Linking the state of environmental DNA to its application for biomonitoring and stock assessment: Targeting mitochondrial/nuclear genes, and different DNA fragment lengths and particle sizes. Environ. DNA 4(2), 271–283. https://doi.org/10.1002/edn3.253 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10. https://doi.org/10.14806/ej.17.1.200 (2011).

    Article 

    Google Scholar 

  • Abarenkov, K. et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa, and classifications reconsidered. Nucleic Acids Res. 52(D1), D791–D797. https://doi.org/10.1093/nar/gkad1039 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Robeson, M. S. et al. RESCRIPt: Reproducible sequence taxonomy reference database management. PLOS Comput. Biol./PLoS Comput. Biol. 17(11), e1009581. https://doi.org/10.1371/journal.pcbi.1009581 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x (1948).

    Article 
    MathSciNet 

    Google Scholar 

  • Berger, W. H. & Parker, F. L. Diversity of planktonic foraminifera in deep-sea sediments. Science 168(3937), 1345–1347. https://doi.org/10.1126/science.168.3937.1345 (1970).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021). https://www.R-project.org/

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016). https://ggplot2.tidyverse.org

  • RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2020). http://www.rstudio.com/

  • Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26(3), 297–302. https://doi.org/10.2307/1932409 (1945).

    Article 

    Google Scholar 

  • Jaccard, P. Nouvellesrecherches sur la distribution florale. Bull. Soc. V Sci. Nat. 44, 223–270 (1908).

    Google Scholar 

  • Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience https://doi.org/10.1186/2047-217x-2-16 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evolut. 30(4), 772–780. https://doi.org/10.1093/molbev/mst010 (2013).

    Article 
    CAS 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nylander, J. A. A. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University (2004).

  • Han, M. V. & Zmasek, C. M. phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinform. https://doi.org/10.1186/1471-2105-10-356 (2009).

    Article 

    Google Scholar 

  • Friedman, J. & Alm, E. J. inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8(9), e1002687. https://doi.org/10.1371/journal.pcbi.1002687 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaffer, M., Thurimella, K., Sterrett, J. D. & Lozupone, C. A. SCNIC: Sparse correlation network investigation for compositional data. Mol. Ecol. Resour. 23(1), 312–325. https://doi.org/10.1111/1755-0998.13704 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaffer, M., Thurimella, K., Sterrett, J. D. & Lozupone, C. A. SCNIC: Sparse correlation network investigation for compositional data. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13704 (2020).

    Article 

    Google Scholar 

  • Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Google Maps [View of the target orchard in Umurbey/Çanakkale], accessed 27 July 2024; https://goo.gl/maps




  • Source link

    Previous Article

    Will Cardano (ADA) Hit $2.30 in Its Next Rally as Shiba Inu (SHIB) and This DeFi Token Gear Up for a Breakout?

    Next Article

    Donald Trump launches wave of air strikes on Yemen's Houthis

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨