UNCCD. United Nations Convention To Combat Desertification in those Countries Experiencing Serious Drought And/or Desertification, Particularly in Africa, 1–2 (United Nations Environment Programme for the Convention to Combat Desertification (CCD), 1994).
Dong, Z., Hu, G., Yan, C., Wang, W. & Lu, J. Aeolian desertification and its causes in the Zoige plateau of China’s Qinghai–Tibetan plateau. Environ. Earth Sci. 59, 1731–1740. https://doi.org/10.1007/s12665-009-0155-9 (2010).
Google Scholar
Wang, G., Munson, S. M., Yu, K., Chen, N. & Gou, Q. Ecological effects of establishing a 40-year Oasis protection system in a Northwestern China desert. Catena 187, 104374. https://doi.org/10.1016/j.catena.2019.104374 (2020).
Google Scholar
Tao, W. Progress in sandy desertification research of China. J. Geog. Sci. 14, 387–400. https://doi.org/10.1007/BF02837482 (2004).
Google Scholar
Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88(3–4), 188–206. https://doi.org/10.1016/j.earscirev.2008.02.001 (2008).
Google Scholar
Zhang, N. et al. Change of soil physicochemical properties, bacterial community and aggregation during desertification of grasslands in the Tibetan plateau. Eur. J. Soil. Sci. 72(1), 274–288. https://doi.org/10.1111/ejss.12939 (2021).
Google Scholar
Zhang, Y. et al. Response of soil enzyme activity to long-term restoration of desertified land. Catena 133, 64–70. https://doi.org/10.1016/j.catena.2015.04.012 (2015). (2015).
Google Scholar
Liu, L. & Bo, T. Effects of checkerboard sand barrier belt on sand transport and Dune advance. Aeolian Res. 42, 100546. https://doi.org/10.1016/j.aeolia.2019.100546 (2020).
Google Scholar
Diasso, U. & Abiodun, B. J. Future impacts of global warming and reforestation on drought patterns over West Africa. Theoret. Appl. Climatol. 133, 647–662. https://doi.org/10.1007/s00704-017-2209-3 (2018).
Google Scholar
Liu, H. et al. Nature-based framework for sustainable afforestation in global drylands under changing climate. Glob. Change Biol. 28(7), 2202–2220. https://doi.org/10.1111/gcb.16059 (2022).
Google Scholar
Xu, L. et al. Effects of fence enclosure on vegetation community characteristics and productivity of a degraded temperate meadow steppe in Northern China. Appl. Sci. 10(8), 2952. https://doi.org/10.3390/app10082952 (2020).
Google Scholar
Wu, G., Liu, Z., Zhang, L., Chen, J. & Hu, T. Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of Western China. Plant. Soil. 332, 331–337. https://doi.org/10.1007/s11104-010-0299-0 (2010).
Google Scholar
Dong, S., Shang, Z., Gao, J. & Boone, R. B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan plateau. Agric. Ecosyst. Environ. 287, 106684. https://doi.org/10.1016/j.agee.2019.106684 (2020).
Google Scholar
Liao, C. et al. Can ecological restoration improve soil properties and plant growth in valley-slope dunes on Southern Tibetan plateau?? Phys. Geogr. 42(2), 143–159. https://doi.org/10.1080/02723646.2020.1735859 (2021).
Google Scholar
Hu, J., Zhou, Q., Cao, Q. & Hu, J. Effects of ecological restoration measures on vegetation and soil properties in semi-humid sandy land on the Southeast Qinghai-Tibetan plateau, China. Global Ecol. Conserv. 33, e02000. https://doi.org/10.1016/j.gecco.2022.e02000 (2022).
Google Scholar
Zuo, F. et al. Soil particle-size distribution and aggregate stability of new reconstructed purple soil affected by soil erosion in overland flow. J. Soils Sediment. 20, 272–283. https://doi.org/10.1007/s11368-019-02408-1 (2020).
Google Scholar
Li, H., Dang, X., Han, Y., Qi, S. & Meng, Z. Sand-fixing measures improve soil particle distribution and promote soil nutrient accumulation for desert–Yellow river coastal Ecotone, China. Ecol. Ind. 157, 111239. https://doi.org/10.1016/j.ecolind.2023.111239 (2023).
Google Scholar
Janzen, H., Campbell, C. A., Brandt, S. A., Lafond, G. P. & Townley-Smith, L. Light-fraction organic matter in soils from long‐term crop rotations. Soil Sci. Soc. Am. J. 56(6), 1799–1806. https://doi.org/10.2136/sssaj1992.03615995005600060025x (1992).
Google Scholar
Zhao, H. et al. Effects of desertification on soil organic C and N content in sandy farmland and grassland of inner Mongolia. Catena 77(3), 187–191. https://doi.org/10.1016/j.catena.2008.12.007 (2009).
Google Scholar
Noma Adamou, S., Abdourhamane Touré, A. & Daoudi, L. Effects of restoration of degraded lands on soils physicochemical properties and adaptability of planted Woody species in Southwestern Niger. Land. Degrad. Dev. 33(18), 3938–3953. https://doi.org/10.1002/ldr.4435 (2022).
Google Scholar
Mandelbrot, B. How long is the Coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638. https://doi.org/10.1126/Science.156.3775.636 (1967).
Google Scholar
Turcotte, D. L. Fractals and fragmentation. J. Geophys. Res. Solid Earth, 91(B2), 1921–1926. https://doi.org/10.1029/JB091iB02p01921 (1986).
Rieu, M. & Sposito, G. Fractal fragmentation, soil porosity, and soil water properties: I. Theory. Soil Sci. Soc. Am. J. 55(5), 1231–1238. https://doi.org/10.2136/sssaj1991.03615995005500050006x (1991).
Google Scholar
Rieu, M. & Sposito, G. Fractal fragmentation, soil porosity, and soil water properties: II. Applications. Soil Sci. Soc. Am. J. 55(5), 1239–1244. https://doi.org/10.2136/sssaj1991.03615995005500050007x (1991).
Google Scholar
Qi, F. et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil. Tillage Res. 184, 45–51. https://doi.org/10.1016/j.still.2018.06.011 (2018).
Google Scholar
Feng, X., Qu, J., Tan, L., Fan, Q. & Niu, Q. Fractal features of sandy soil particle-size distributions during the rangeland desertification process on the Eastern Qinghai-Tibet plateau. J. Soils Sediments. 20, 472–485. https://doi.org/10.1007/s11368-019-02392-6 (2020).
Google Scholar
Mariotte, P. et al. Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33(2), 129–142. https://doi.org/10.1016/j.tree.2017.11.005 (2018).
Google Scholar
Wang, L., Zhou, G., Zhu, X., Gao, B. & Xu, H. Effects of litter on soil organic carbon and microbial functional diversity. Acta Ecol. Sin. 41(7), 2709–2718. https://doi.org/10.5846/stxb202005141233 (2021).
Google Scholar
Wu, G., Zhang, M., Liu, Y. & López-Vicente, M. Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem. Geoderma 374, 114429. https://doi.org/10.1016/j.geoderma.2020.114429 (2020).
Google Scholar
Guo, X., Yang, G., Ma, Y. & Qiao, S. Effects of different sand fixation plantations on soil properties in the Hunshandake sandy land, Eastern inner Mongolia, China. Sci. Rep. 14, 27904. https://doi.org/10.1038/s41598-024-78949-4 (2024).
Google Scholar
Li, X., Zhang, Z., Zhang, J., Wang, X. & Jia, X. Association between vegetation patterns and soil properties in the southeastern Tengger desert, China. Arid Land. Res. Manage. 18(4), 369–383. https://doi.org/10.1080/15324980490497429 (2004).
Google Scholar
Huang, C., Zeng, Y., Wang, L. & Wang, S. Responses of soil nutrients to vegetation restoration in China. Reg. Envriron. Chang. 20(3), 82. https://doi.org/10.1007/s10113-020-01679-6 (2020).
Google Scholar
Gou, X. et al. The effect of artificial vegetation recovery on the soil nutrients and enzyme activities in subhumid desert land on the Southeast Qinghai-Tibetan plateau, China. Ecol. Eng. 139, 105528. https://doi.org/10.1016/j.ecoleng.2019.06.023 (2019).
Google Scholar
Zhang, L. et al. Conversion of farmland to forest or grassland improves soil carbon, nitrogen, and ecosystem multi-functionality in a subtropical karst region of Southwest China. Sci. Rep. 14(1), 17745. https://doi.org/10.1038/s41598-024-68883-w (2024).
Google Scholar
Bai, Z. Bahrain Youqi land use planning of ecological evaluation research. Inner Mongolia Normal Univ. (2011). (in Chinese).
Yang, P., Luo, X. & Shi, Y. Soil fractal characteristics characterized by weight distribution of particle size. Chin. Sci. Bull. 20, 1896–1899. https://doi.org/10.1360/csb1993-38-20-1896 (1993). (in Chinese).
Google Scholar
Li, D. & Zhang, T. Fractal features of particle size distribution of soils in China. Soil. Environ. Sci. 9(4), 263–265 (2000). (in Chinese).
Li, Y., Cui, J., Zhang, T., Okuro, T. & Drake, S. Effectiveness of sand-fixing measures on desert land restoration in Kerqin sandy land, Northern China. Ecol. Eng. 35(1), 118–127. https://doi.org/10.1016/j.ecoleng.2008.09.013 (2009).
Google Scholar
Wang, X. et al. Multifractal dimensions of soil particle size distribution reveal the erodibility and fertility of alpine grassland soils in the Northern Tibet plateau. J. Environ. Manage. 315, 115145. https://doi.org/10.1016/j.jenvman.2022.115145 (2022).
Google Scholar
Tisdall, J. M. & OADES, J. M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33(2), 141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x (1982).
Google Scholar
Zhou, Y. et al. Response of soil aggregate stability and erodibility to different treatments on typical steppe in the loess plateau, China. Restor. Ecol. 30(5), e13593. https://doi.org/10.1111/rec.13593 (2022).
Google Scholar
Li, W. et al. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis. Soil Biol. Biochem. 82, 112–118. https://doi.org/10.1016/j.soilbio.2015.01.001 (2015).
Google Scholar
Dong, L. et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the loess plateau. J. Environ. Manage. 302, 113985. https://doi.org/10.1016/j.jenvman.2021.113985 (2022).
Google Scholar
Zhao, W., Liu, Z. & Cheng, G. Fractal dimension of soil particle for sand desertification. Acta Pedol. Sin. 39(6), 877–881 (2002). (in Chinese).
Liu, Z. et al. Fractal dimension characteristics of soil particle size under different plant communities in ecological restoration area. Chin. J. Ecol. 36(2), 303–308. https://doi.org/10.13292/j.1000-4890.201702.030 (2017). (in Chinese).
Google Scholar
Hu, J. Influence of three typical ecological restoration measures on vegetation-soil system in sandy land of Northwest Sichuan. Southwest. Minzu Univ. https://doi.org/10.27417/d.cnki.gxnmc.2021.000275 (2021). (in Chinese).
Google Scholar
Wang, Y. et al. Sand Dune stabilization changes the vegetation characteristics and soil seed bank and their correlations with environmental factors. Sci. Total Environ. 648, 500–507. https://doi.org/10.1016/j.scitotenv.2018.08.093 (2019).
Google Scholar
Liang, Y. et al. Natural degradation process of Salix psammophila sand barriers regulates desert soil microbial biomass C: N: P stoichiometry and homeostasis. Catena 222, 106880. (2023).
Google Scholar
Liu, J. et al. Contributions of plant litter to soil microbial activity improvement and soil nutrient enhancement along with herb and shrub colonization expansions in an arid sandy land. Catena 227, 107098. https://doi.org/10.1016/j.catena.2023.107098 (2023).
Google Scholar
Wang, L. et al. Effects of vegetation type, fine and coarse roots on soil microbial communities and enzyme activities in Eastern Tibetan plateau. Catena. 194, 104694 https://doi.org/10.1016/j.catena.2020.104694 (2020).
Lin, Y. et al. Leymus chinensis resists degraded soil stress by modulating root exudate components to attract beneficial microorganisms. Front. Microbiol. 13, 951838. https://doi.org/10.3389/fmicb.2022.951838 (2022).
Google Scholar