Soil quality changes in the Horqin sandy area under different ecological restoration patterns

Soil quality changes in the Horqin sandy area under different ecological restoration patterns


  • UNCCD. United Nations Convention To Combat Desertification in those Countries Experiencing Serious Drought And/or Desertification, Particularly in Africa, 1–2 (United Nations Environment Programme for the Convention to Combat Desertification (CCD), 1994).

  • Dong, Z., Hu, G., Yan, C., Wang, W. & Lu, J. Aeolian desertification and its causes in the Zoige plateau of China’s Qinghai–Tibetan plateau. Environ. Earth Sci. 59, 1731–1740. https://doi.org/10.1007/s12665-009-0155-9 (2010).

    Article 
    ADS 

    Google Scholar 

  • Wang, G., Munson, S. M., Yu, K., Chen, N. & Gou, Q. Ecological effects of establishing a 40-year Oasis protection system in a Northwestern China desert. Catena 187, 104374. https://doi.org/10.1016/j.catena.2019.104374 (2020).

    Article 

    Google Scholar 

  • Tao, W. Progress in sandy desertification research of China. J. Geog. Sci. 14, 387–400. https://doi.org/10.1007/BF02837482 (2004).

    Article 

    Google Scholar 

  • Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88(3–4), 188–206. https://doi.org/10.1016/j.earscirev.2008.02.001 (2008).

    Article 
    ADS 

    Google Scholar 

  • Zhang, N. et al. Change of soil physicochemical properties, bacterial community and aggregation during desertification of grasslands in the Tibetan plateau. Eur. J. Soil. Sci. 72(1), 274–288. https://doi.org/10.1111/ejss.12939 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Response of soil enzyme activity to long-term restoration of desertified land. Catena 133, 64–70. https://doi.org/10.1016/j.catena.2015.04.012 (2015). (2015).

    Article 
    CAS 

    Google Scholar 

  • Liu, L. & Bo, T. Effects of checkerboard sand barrier belt on sand transport and Dune advance. Aeolian Res. 42, 100546. https://doi.org/10.1016/j.aeolia.2019.100546 (2020).

    Article 

    Google Scholar 

  • Diasso, U. & Abiodun, B. J. Future impacts of global warming and reforestation on drought patterns over West Africa. Theoret. Appl. Climatol. 133, 647–662. https://doi.org/10.1007/s00704-017-2209-3 (2018).

    Article 
    ADS 

    Google Scholar 

  • Liu, H. et al. Nature-based framework for sustainable afforestation in global drylands under changing climate. Glob. Change Biol. 28(7), 2202–2220. https://doi.org/10.1111/gcb.16059 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Xu, L. et al. Effects of fence enclosure on vegetation community characteristics and productivity of a degraded temperate meadow steppe in Northern China. Appl. Sci. 10(8), 2952. https://doi.org/10.3390/app10082952 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wu, G., Liu, Z., Zhang, L., Chen, J. & Hu, T. Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of Western China. Plant. Soil. 332, 331–337. https://doi.org/10.1007/s11104-010-0299-0 (2010).

    Article 
    CAS 

    Google Scholar 

  • Dong, S., Shang, Z., Gao, J. & Boone, R. B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan plateau. Agric. Ecosyst. Environ. 287, 106684. https://doi.org/10.1016/j.agee.2019.106684 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liao, C. et al. Can ecological restoration improve soil properties and plant growth in valley-slope dunes on Southern Tibetan plateau?? Phys. Geogr. 42(2), 143–159. https://doi.org/10.1080/02723646.2020.1735859 (2021).

    Article 

    Google Scholar 

  • Hu, J., Zhou, Q., Cao, Q. & Hu, J. Effects of ecological restoration measures on vegetation and soil properties in semi-humid sandy land on the Southeast Qinghai-Tibetan plateau, China. Global Ecol. Conserv. 33, e02000. https://doi.org/10.1016/j.gecco.2022.e02000 (2022).

    Article 

    Google Scholar 

  • Zuo, F. et al. Soil particle-size distribution and aggregate stability of new reconstructed purple soil affected by soil erosion in overland flow. J. Soils Sediment. 20, 272–283. https://doi.org/10.1007/s11368-019-02408-1 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, H., Dang, X., Han, Y., Qi, S. & Meng, Z. Sand-fixing measures improve soil particle distribution and promote soil nutrient accumulation for desert–Yellow river coastal Ecotone, China. Ecol. Ind. 157, 111239. https://doi.org/10.1016/j.ecolind.2023.111239 (2023).

    Article 
    CAS 

    Google Scholar 

  • Janzen, H., Campbell, C. A., Brandt, S. A., Lafond, G. P. & Townley-Smith, L. Light-fraction organic matter in soils from long‐term crop rotations. Soil Sci. Soc. Am. J. 56(6), 1799–1806. https://doi.org/10.2136/sssaj1992.03615995005600060025x (1992).

    Article 
    ADS 

    Google Scholar 

  • Zhao, H. et al. Effects of desertification on soil organic C and N content in sandy farmland and grassland of inner Mongolia. Catena 77(3), 187–191. https://doi.org/10.1016/j.catena.2008.12.007 (2009).

    Article 
    CAS 

    Google Scholar 

  • Noma Adamou, S., Abdourhamane Touré, A. & Daoudi, L. Effects of restoration of degraded lands on soils physicochemical properties and adaptability of planted Woody species in Southwestern Niger. Land. Degrad. Dev. 33(18), 3938–3953. https://doi.org/10.1002/ldr.4435 (2022).

    Article 

    Google Scholar 

  • Mandelbrot, B. How long is the Coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638. https://doi.org/10.1126/Science.156.3775.636 (1967).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Turcotte, D. L. Fractals and fragmentation. J. Geophys. Res. Solid Earth, 91(B2), 1921–1926. https://doi.org/10.1029/JB091iB02p01921 (1986).

  • Rieu, M. & Sposito, G. Fractal fragmentation, soil porosity, and soil water properties: I. Theory. Soil Sci. Soc. Am. J. 55(5), 1231–1238. https://doi.org/10.2136/sssaj1991.03615995005500050006x (1991).

    Article 
    ADS 

    Google Scholar 

  • Rieu, M. & Sposito, G. Fractal fragmentation, soil porosity, and soil water properties: II. Applications. Soil Sci. Soc. Am. J. 55(5), 1239–1244. https://doi.org/10.2136/sssaj1991.03615995005500050007x (1991).

    Article 
    ADS 

    Google Scholar 

  • Qi, F. et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil. Tillage Res. 184, 45–51. https://doi.org/10.1016/j.still.2018.06.011 (2018).

    Article 

    Google Scholar 

  • Feng, X., Qu, J., Tan, L., Fan, Q. & Niu, Q. Fractal features of sandy soil particle-size distributions during the rangeland desertification process on the Eastern Qinghai-Tibet plateau. J. Soils Sediments. 20, 472–485. https://doi.org/10.1007/s11368-019-02392-6 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mariotte, P. et al. Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33(2), 129–142. https://doi.org/10.1016/j.tree.2017.11.005 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wang, L., Zhou, G., Zhu, X., Gao, B. & Xu, H. Effects of litter on soil organic carbon and microbial functional diversity. Acta Ecol. Sin. 41(7), 2709–2718. https://doi.org/10.5846/stxb202005141233 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wu, G., Zhang, M., Liu, Y. & López-Vicente, M. Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem. Geoderma 374, 114429. https://doi.org/10.1016/j.geoderma.2020.114429 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Guo, X., Yang, G., Ma, Y. & Qiao, S. Effects of different sand fixation plantations on soil properties in the Hunshandake sandy land, Eastern inner Mongolia, China. Sci. Rep. 14, 27904. https://doi.org/10.1038/s41598-024-78949-4 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X., Zhang, Z., Zhang, J., Wang, X. & Jia, X. Association between vegetation patterns and soil properties in the southeastern Tengger desert, China. Arid Land. Res. Manage. 18(4), 369–383. https://doi.org/10.1080/15324980490497429 (2004).

    Article 

    Google Scholar 

  • Huang, C., Zeng, Y., Wang, L. & Wang, S. Responses of soil nutrients to vegetation restoration in China. Reg. Envriron. Chang. 20(3), 82. https://doi.org/10.1007/s10113-020-01679-6 (2020).

    Article 

    Google Scholar 

  • Gou, X. et al. The effect of artificial vegetation recovery on the soil nutrients and enzyme activities in subhumid desert land on the Southeast Qinghai-Tibetan plateau, China. Ecol. Eng. 139, 105528. https://doi.org/10.1016/j.ecoleng.2019.06.023 (2019).

    Article 

    Google Scholar 

  • Zhang, L. et al. Conversion of farmland to forest or grassland improves soil carbon, nitrogen, and ecosystem multi-functionality in a subtropical karst region of Southwest China. Sci. Rep. 14(1), 17745. https://doi.org/10.1038/s41598-024-68883-w (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, Z. Bahrain Youqi land use planning of ecological evaluation research. Inner Mongolia Normal Univ. (2011). (in Chinese).

  • Yang, P., Luo, X. & Shi, Y. Soil fractal characteristics characterized by weight distribution of particle size. Chin. Sci. Bull. 20, 1896–1899. https://doi.org/10.1360/csb1993-38-20-1896 (1993). (in Chinese).

    Article 

    Google Scholar 

  • Li, D. & Zhang, T. Fractal features of particle size distribution of soils in China. Soil. Environ. Sci. 9(4), 263–265 (2000). (in Chinese).

    Google Scholar 

  • Li, Y., Cui, J., Zhang, T., Okuro, T. & Drake, S. Effectiveness of sand-fixing measures on desert land restoration in Kerqin sandy land, Northern China. Ecol. Eng. 35(1), 118–127. https://doi.org/10.1016/j.ecoleng.2008.09.013 (2009).

    Article 

    Google Scholar 

  • Wang, X. et al. Multifractal dimensions of soil particle size distribution reveal the erodibility and fertility of alpine grassland soils in the Northern Tibet plateau. J. Environ. Manage. 315, 115145. https://doi.org/10.1016/j.jenvman.2022.115145 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Tisdall, J. M. & OADES, J. M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33(2), 141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x (1982).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Y. et al. Response of soil aggregate stability and erodibility to different treatments on typical steppe in the loess plateau, China. Restor. Ecol. 30(5), e13593. https://doi.org/10.1111/rec.13593 (2022).

    Article 

    Google Scholar 

  • Li, W. et al. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis. Soil Biol. Biochem. 82, 112–118. https://doi.org/10.1016/j.soilbio.2015.01.001 (2015).

    Article 
    CAS 

    Google Scholar 

  • Dong, L. et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the loess plateau. J. Environ. Manage. 302, 113985. https://doi.org/10.1016/j.jenvman.2021.113985 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, W., Liu, Z. & Cheng, G. Fractal dimension of soil particle for sand desertification. Acta Pedol. Sin. 39(6), 877–881 (2002). (in Chinese).

    Google Scholar 

  • Liu, Z. et al. Fractal dimension characteristics of soil particle size under different plant communities in ecological restoration area. Chin. J. Ecol. 36(2), 303–308. https://doi.org/10.13292/j.1000-4890.201702.030 (2017). (in Chinese).

    Article 

    Google Scholar 

  • Hu, J. Influence of three typical ecological restoration measures on vegetation-soil system in sandy land of Northwest Sichuan. Southwest. Minzu Univ. https://doi.org/10.27417/d.cnki.gxnmc.2021.000275 (2021). (in Chinese).

    Article 

    Google Scholar 

  • Wang, Y. et al. Sand Dune stabilization changes the vegetation characteristics and soil seed bank and their correlations with environmental factors. Sci. Total Environ. 648, 500–507. https://doi.org/10.1016/j.scitotenv.2018.08.093 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, Y. et al. Natural degradation process of Salix psammophila sand barriers regulates desert soil microbial biomass C: N: P stoichiometry and homeostasis. Catena 222, 106880. (2023).

    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. Contributions of plant litter to soil microbial activity improvement and soil nutrient enhancement along with herb and shrub colonization expansions in an arid sandy land. Catena 227, 107098. https://doi.org/10.1016/j.catena.2023.107098 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. et al. Effects of vegetation type, fine and coarse roots on soil microbial communities and enzyme activities in Eastern Tibetan plateau. Catena. 194, 104694 https://doi.org/10.1016/j.catena.2020.104694 (2020).

  • Lin, Y. et al. Leymus chinensis resists degraded soil stress by modulating root exudate components to attract beneficial microorganisms. Front. Microbiol. 13, 951838. https://doi.org/10.3389/fmicb.2022.951838 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 




  • Source link

    Previous Article

    Android 16 improves multitasking by letting you minimize desktop windows

    Next Article

    LockBit ransomware developer extradited to face crimes in the United States

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨