Li, Q., Yan, F. & Texter, J. Polymerized and colloidal ionic liquids horizontal line syntheses and applications. Chem. Rev. 124, 3813–3931 (2024).
Google Scholar
Arora, S. & Verma, N. A review: advancing organic electronics through the lens of ionic liquids and polymerized ionic liquids. RSC Appl. Polym. 2, 317–355 (2024).
Google Scholar
Nie, H. et al. Light-controllable ionic conductivity in a polymeric ionic liquid. Angew. Chem. Int. Ed. 59, 5123–5128 (2020).
Google Scholar
Zhou, T. H., Zhao, Y., Choi, J. W. & Coskun, A. Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem. Int. Ed. 60, 22791–22796 (2021).
Google Scholar
Ganesan, V. Ion transport in polymeric ionic liquids: recent developments and open questions. Mol. Syst. Des. Eng. 4, 280–293 (2019).
Google Scholar
Jones, S. D. et al. Design of polymeric zwitterionic solid electrolytes with superionic lithium transport. ACS Cent. Sci. 8, 169–175 (2022).
Google Scholar
Griffin, P. J. et al. Ion transport in cyclopropenium-based polymerized ionic liquids. Macromolecules 51, 1681–1687 (2018).
Google Scholar
Forsyth, M., Porcarelli, L., Wang, X. E., Goujon, N. & Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).
Google Scholar
Wang, J. R., Li, S. Q., Zhao, Q., Song, C. & Xue, Z. G. Structure code for advanced polymer electrolyte in lithium-ion batteries. Adv. Funct. Mater. 31, 2008208 (2021).
Watanabe, M. et al. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017).
Google Scholar
Deng, X. et al. Poly(ionic liquid)-coated meshes with opposite wettability for continuous oil/water separation. Ind. Eng. Chem. Res. 59, 6672–6680 (2020).
Google Scholar
Zhang, M. M., Semiat, R. & He, X. Z. Recent advances in poly(ionic liquids) membranes for CO2 separation. Sep. Purif. Technol. 299, 121784 (2022).
Chen, Z. et al. Boosting H2O2 utilization efficiency in benzene hydroxylation to phenol via isolated single VO4 site on hydrophobic poly(ionic liquid)-derivative. J. Chem. Eng. 479, 147501 (2024).
Zhao, H. L. et al. Poly(ionic liquid)-mediated green synthesis of 3D AuPt flower-like nanoballs with composition-dependent SERS sensitivity and catalytic activity. J. Mol. Liq. 381, 121823 (2023).
Jiang, Y. J. et al. “Metaphilic” cell-penetrating polypeptide-vancomycin conjugate efficiently eradicates intracellular bacteria via a dual mechanism. Acs Cent. Sci. 6, 2267–2276 (2020).
Google Scholar
Jiang, Y. J., Chen, Y. Y., Song, Z. Y., Tan, Z. Z. & Cheng, J. J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug. Deliv. Rev. 170, 261–280 (2021).
Google Scholar
Yuan, J., Soll, S., Drechsler, M., Muller, A. H. & Antonietti, M. Self-assembly of poly(ionic liquid)s: polymerization, mesostructure formation, and directional alignment in one step. J. Am. Chem. Soc. 133, 17556–17559 (2011).
Google Scholar
Nguyen, H. D. et al. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy Environ. Sci. 11, 3298–3309 (2018).
Google Scholar
Park, J., Staiger, A., Mecking, S. & Winey, K. I. Ordered nanostructures in thin films of precise ion-containing multiblock copolymers. ACS Cent. Sci. 8, 388–393 (2022).
Google Scholar
Jiang, Y. V. et al. The evolution of cyclopropenium ions into functional polyelectrolytes. Nat. Commun. 6, 5950 (2015).
Google Scholar
Li, Q. N. et al. Poly(Ionic Liquid) double-network elastomers with high-impact resistance enhanced by cation-pi interactions. Adv. Mater. 36, e2311214 (2024).
Google Scholar
Li, L. L. et al. High-toughness and high-strength solvent-free linear poly(ionic liquid) elastomers. Adv. Mater. 36, e2308547 (2024).
Google Scholar
Liu, L. W. et al. Excellent polymerized ionic-liquid-based gel polymer electrolytes enabled by molecular structure design and anion-derived interfacial layer. ACS Appl. Mater. Interfaces 16, 8895–8902 (2024).
Google Scholar
Schneider, Y. et al. Ionic conduction in nanostructured membranes based on polymerized protic ionic liquids. Macromolecules 46, 1543–1548 (2013).
Google Scholar
Peckham, T. J. & Holdcroft, S. Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv. Mater. 22, 4667–4690 (2010).
Google Scholar
Yuan, R. et al. Ionic conductivity of low molecular weight block copolymer electrolytes. Macromolecules 46, 914–921 (2013).
Google Scholar
Gomez, E. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett 9, 1212–1216 (2009).
Google Scholar
Meek, K. M. & Elabd, Y. A. Polymerized ionic liquid block copolymers for electrochemical energy. J. Mater. Chem. A 3, 24187–24194 (2015).
Google Scholar
Ye, Y. S., Sharick, S., Davis, E. M., Winey, K. I. & Elabd, Y. A. High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett. 2, 575–580 (2013).
Google Scholar
Weber, R. L. et al. Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers. Macromolecules 44, 5727–5735 (2011).
Google Scholar
Choi, J. H., Ye, Y. S., Elabd, Y. A. & Winey, K. I. Network structure and strong microphase separation for high ion conductivity in polymerized ionic liquid block copolymers. Macromolecules 46, 5290–5300 (2013).
Google Scholar
Harris, M. A. et al. Ion transport and interfacial dynamics in disordered block copolymers of ammonium-based polymerized ionic liquids. Macromolecules 51, 3477–3486 (2018).
Google Scholar
Min, J. et al. Enhancing ion transport in charged block copolymers by stabilizing low symmetry morphology: Electrostatic control of interfaces. Proc. Natl. Acad. Sci. USA 118, e2107987118 (2021).
Google Scholar
Jung, H. Y., Kim, S. Y., Kim, O. & Park, M. J. Effect of the protogenic group on the phase behavior and ion transport properties of acid-bearing block copolymers. Macromolecules 48, 6142–6152 (2015).
Google Scholar
Chen, Y. Y. et al. Helical peptide structure improves conductivity and stability of solid electrolytes. Nat. Mater. 23, 1539–1546 (2024).
Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).
Google Scholar
Samajdar, R. et al. Secondary structure determines electron transport in peptides. Proc. Natl. Acad. Sci. USA 121, e2403324121 (2024).
Google Scholar
Kuo, S. W., Lee, H. F., Huang, C. F., Huang, C. J. & Chang, F. C. Synthesis and self-assembly of helical polypeptide-random coil amphiphilic diblock copolymer. J. Polym. Sci. Part A Polym. Chem. 46, 3108–3119 (2008).
Google Scholar
Chen, J. T., Thomas, E. L., Ober, C. K. & Mao, G. P. Self-assembled smectic phases in rod-coil block copolymers. Science 273, 343–346 (1996).
Google Scholar
Borsali, R., Lecommandoux, S., Pecora, R. & Benoît, H. Scattering properties of rod−coil and once-broken rod block copolymers. Macromolecules 34, 4229–4234 (2001).
Google Scholar
Scanga, R. A. et al. Asymmetric polymerization-induced crystallization-driven self-assembly of helical, rod-coil poly(aryl isocyanide) block copolymers. J. Am. Chem. Soc. 145, 6319–6329 (2023).
Google Scholar
Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).
Google Scholar
Banno, M. et al. Two-dimensional bilayer smectic ordering of rigid rod−rod helical diblock polyisocyanides. Macromolecules 43, 6553–6561 (2010).
Google Scholar
Vacogne, C. D., Wei, C. X., Tauer, K. & Schlaad, H. Self-assembly of alpha-helical polypeptides into microscopic and enantiomorphic spirals. J. Am. Chem. Soc. 140, 11387–11394 (2018).
Google Scholar
Wang, K. H., Liu, C. H., Tan, D. H., Nieh, M. P. & Su, W. F. Block sequence effects on the self-assembly behaviors of polypeptide-based penta-block copolymer hydrogels. ACS Appl. Mater. Interfaces 16, 6674–6686 (2024).
Google Scholar
Klok, H. A. & Lecommandoux, S. Supramolecular materials via block copolymer self-assembly. Adv. Mater. 13, 1217–1229 (2001).
Yang, T. J. et al. Tailoring synthetic polypeptide design for directed fibril superstructure formation and enhanced hydrogel properties. J. Am. Chem. Soc. 146, 5823–5833 (2024).
Google Scholar
Minich, E. A., Nowak, A. P., Deming, T. J. & Pochan, D. J. Rod–rod and rod–coil self-assembly and phase behavior of polypeptide diblock copolymers. Polymer 45, 1951–1957 (2004).
Google Scholar
Yang, T. J. et al. Synthesis and In situ thermal induction of beta-sheet nanocrystals in spider silk-inspired copolypeptides. J. Am. Chem. Soc. 146, 31849–31859 (2024).
Google Scholar
Papadopoulos, P., Floudas, G., Klok, H. A., Schnell, I. & Pakula, T. Self-assembly and dynamics of poly(gamma-benzyl-l-glutamate) peptides. Biomacromolecules 5, 81–91 (2004).
Google Scholar
Ye, Y. S., Choi, J. H., Winey, K. I. & Elabd, Y. A. Polymerized ionic liquid block and random copolymers: effect of weak microphase separation on ion transport. Macromolecules 45, 7027–7035 (2012).
Google Scholar
Zhou, Q. H. et al. Synthesis and hierarchical self-assembly of rod−rod block copolymers via click chemistry between mesogen-jacketed liquid crystalline polymers and helical polypeptides. Macromolecules 43, 5637–5646 (2010).
Google Scholar
Zhou, F. et al. Synthesis and self-assembly of rod–rod block copolymers with different rod diameters. Macromolecules 46, 8253–8263 (2013).
Google Scholar
Haataja, J. S. et al. Double smectic self-assembly in block copolypeptide complexes. Biomacromolecules 13, 3572–3580 (2012).
Google Scholar
Papadopoulos, P. et al. Nanodomain-induced chain folding in poly(gamma-benzyl-L-glutamate)-b-polyglycine diblock copolymers. Biomacromolecules 6, 2352–2361 (2005).
Google Scholar
Parry, D. A. & Elliott, A. X-ray diffraction patterns of liquid crystalline solutions of poly-gamma-benzyl-L-glutamate. Nature 206, 616–617 (1965).
Google Scholar
Choi, U. H. et al. Dielectric and viscoelastic responses of imidazolium-based ionomers with different counterions and side chain lengths. Macromolecules 47, 777–790 (2014).
Google Scholar
Zhao, Q. J., Shen, C. T., Halloran, K. P. & Evans, C. M. Effect of network architecture and linker polarity on ion aggregation and conductivity in precise polymerized ionic liquids. ACS Macro Lett. 8, 658–663 (2019).
Google Scholar
Robinson, C. & Ward, J. C. Liquid-crystalline structures in polypeptides. Nature 180, 1183–1184 (1957).
Google Scholar
Stacy, E. W. et al. Fundamental limitations of ionic conductivity in polymerized ionic liquids. Macromolecules 51, 8637–8645 (2018).
Google Scholar
Zhao, Q. J., Bennington, P., Nealey, P. F., Patel, S. N. & Evans, C. M. Ion specific, thin film confinement effects on conductivity in polymerized ionic liquids. Macromolecules 54, 10520–10528 (2021).
Google Scholar
Bocharova, V. et al. Role of fast dynamics in conductivity of polymerized ionic liquids. J. Phys. Chem. B 124, 10539–10545 (2020).
Google Scholar
Wojnarowska, Z. et al. Effect of chain rigidity on the decoupling of ion motion from segmental relaxation in polymerized ionic liquids: ambient and elevated pressure studies. Macromolecules 50, 6710–6721 (2017).
Google Scholar
Evans, C. M., Sanoja, G. E., Popere, B. C. & Segalrnan, R. A. Anhydrous proton transport in polymerized ionic liquid block copolymers: roles of block length, ionic content, and confinement. Macromolecules 49, 395–404 (2016).
Google Scholar
Fan, F. et al. Ion conduction in polymerized ionic liquids with different pendant groups. Macromolecules 48, 4461–4470 (2015).
Google Scholar
Wanakule, N. S. et al. Ionic conductivity of block copolymer electrolytes in the vicinity of order−disorder and order−order transitions. Macromolecules 42, 5642–5651 (2009).
Google Scholar
Schulze, M. W., McIntosh, L. D., Hillmyer, M. A. & Lodge, T. P. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. Nano Lett. 14, 122–126 (2014).
Google Scholar
Wagner, T. et al. Vinylphosphonic Acid Homo- and Block Copolymers. Macromol. Chem. Phys. 210, 1903–1914 (2009).
Google Scholar
Kumar, A., Pisula, W. & Mullen, K. Effect of humidity and temperature on proton conduction in phosphonated copolymers. Mater. Today Commun. 20, 100539 (2019).
Villaluenga, I., Chen, X. C., Devaux, D., Hallinan, D. T. & Balsara, N. P. Nanoparticle-driven assembly of highly conducting hybrid block copolymer electrolytes. Macromolecules 48, 358–364 (2015).
Google Scholar