Ion transport in helical-helical polypeptide polymerized ionic liquid block copolymers

Ion transport in helical-helical polypeptide polymerized ionic liquid block copolymers


  • Li, Q., Yan, F. & Texter, J. Polymerized and colloidal ionic liquids horizontal line syntheses and applications. Chem. Rev. 124, 3813–3931 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Arora, S. & Verma, N. A review: advancing organic electronics through the lens of ionic liquids and polymerized ionic liquids. RSC Appl. Polym. 2, 317–355 (2024).

    Article 

    Google Scholar 

  • Nie, H. et al. Light-controllable ionic conductivity in a polymeric ionic liquid. Angew. Chem. Int. Ed. 59, 5123–5128 (2020).

    Article 

    Google Scholar 

  • Zhou, T. H., Zhao, Y., Choi, J. W. & Coskun, A. Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem. Int. Ed. 60, 22791–22796 (2021).

    Article 

    Google Scholar 

  • Ganesan, V. Ion transport in polymeric ionic liquids: recent developments and open questions. Mol. Syst. Des. Eng. 4, 280–293 (2019).

    Article 

    Google Scholar 

  • Jones, S. D. et al. Design of polymeric zwitterionic solid electrolytes with superionic lithium transport. ACS Cent. Sci. 8, 169–175 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griffin, P. J. et al. Ion transport in cyclopropenium-based polymerized ionic liquids. Macromolecules 51, 1681–1687 (2018).

    Article 
    ADS 

    Google Scholar 

  • Forsyth, M., Porcarelli, L., Wang, X. E., Goujon, N. & Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Wang, J. R., Li, S. Q., Zhao, Q., Song, C. & Xue, Z. G. Structure code for advanced polymer electrolyte in lithium-ion batteries. Adv. Funct. Mater. 31, 2008208 (2021).

  • Watanabe, M. et al. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Deng, X. et al. Poly(ionic liquid)-coated meshes with opposite wettability for continuous oil/water separation. Ind. Eng. Chem. Res. 59, 6672–6680 (2020).

    Article 

    Google Scholar 

  • Zhang, M. M., Semiat, R. & He, X. Z. Recent advances in poly(ionic liquids) membranes for CO2 separation. Sep. Purif. Technol. 299, 121784 (2022).

  • Chen, Z. et al. Boosting H2O2 utilization efficiency in benzene hydroxylation to phenol via isolated single VO4 site on hydrophobic poly(ionic liquid)-derivative. J. Chem. Eng. 479, 147501 (2024).

  • Zhao, H. L. et al. Poly(ionic liquid)-mediated green synthesis of 3D AuPt flower-like nanoballs with composition-dependent SERS sensitivity and catalytic activity. J. Mol. Liq. 381, 121823 (2023).

  • Jiang, Y. J. et al. “Metaphilic” cell-penetrating polypeptide-vancomycin conjugate efficiently eradicates intracellular bacteria via a dual mechanism. Acs Cent. Sci. 6, 2267–2276 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, Y. J., Chen, Y. Y., Song, Z. Y., Tan, Z. Z. & Cheng, J. J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug. Deliv. Rev. 170, 261–280 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Yuan, J., Soll, S., Drechsler, M., Muller, A. H. & Antonietti, M. Self-assembly of poly(ionic liquid)s: polymerization, mesostructure formation, and directional alignment in one step. J. Am. Chem. Soc. 133, 17556–17559 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Nguyen, H. D. et al. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy Environ. Sci. 11, 3298–3309 (2018).

    Article 

    Google Scholar 

  • Park, J., Staiger, A., Mecking, S. & Winey, K. I. Ordered nanostructures in thin films of precise ion-containing multiblock copolymers. ACS Cent. Sci. 8, 388–393 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, Y. V. et al. The evolution of cyclopropenium ions into functional polyelectrolytes. Nat. Commun. 6, 5950 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Li, Q. N. et al. Poly(Ionic Liquid) double-network elastomers with high-impact resistance enhanced by cation-pi interactions. Adv. Mater. 36, e2311214 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Li, L. L. et al. High-toughness and high-strength solvent-free linear poly(ionic liquid) elastomers. Adv. Mater. 36, e2308547 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Liu, L. W. et al. Excellent polymerized ionic-liquid-based gel polymer electrolytes enabled by molecular structure design and anion-derived interfacial layer. ACS Appl. Mater. Interfaces 16, 8895–8902 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Schneider, Y. et al. Ionic conduction in nanostructured membranes based on polymerized protic ionic liquids. Macromolecules 46, 1543–1548 (2013).

    Article 
    ADS 

    Google Scholar 

  • Peckham, T. J. & Holdcroft, S. Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv. Mater. 22, 4667–4690 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Yuan, R. et al. Ionic conductivity of low molecular weight block copolymer electrolytes. Macromolecules 46, 914–921 (2013).

    Article 
    ADS 

    Google Scholar 

  • Gomez, E. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett 9, 1212–1216 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Meek, K. M. & Elabd, Y. A. Polymerized ionic liquid block copolymers for electrochemical energy. J. Mater. Chem. A 3, 24187–24194 (2015).

    Article 

    Google Scholar 

  • Ye, Y. S., Sharick, S., Davis, E. M., Winey, K. I. & Elabd, Y. A. High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett. 2, 575–580 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Weber, R. L. et al. Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers. Macromolecules 44, 5727–5735 (2011).

    Article 
    ADS 

    Google Scholar 

  • Choi, J. H., Ye, Y. S., Elabd, Y. A. & Winey, K. I. Network structure and strong microphase separation for high ion conductivity in polymerized ionic liquid block copolymers. Macromolecules 46, 5290–5300 (2013).

    Article 
    ADS 

    Google Scholar 

  • Harris, M. A. et al. Ion transport and interfacial dynamics in disordered block copolymers of ammonium-based polymerized ionic liquids. Macromolecules 51, 3477–3486 (2018).

    Article 
    ADS 

    Google Scholar 

  • Min, J. et al. Enhancing ion transport in charged block copolymers by stabilizing low symmetry morphology: Electrostatic control of interfaces. Proc. Natl. Acad. Sci. USA 118, e2107987118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jung, H. Y., Kim, S. Y., Kim, O. & Park, M. J. Effect of the protogenic group on the phase behavior and ion transport properties of acid-bearing block copolymers. Macromolecules 48, 6142–6152 (2015).

    Article 
    ADS 

    Google Scholar 

  • Chen, Y. Y. et al. Helical peptide structure improves conductivity and stability of solid electrolytes. Nat. Mater. 23, 1539–1546 (2024).

  • Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Samajdar, R. et al. Secondary structure determines electron transport in peptides. Proc. Natl. Acad. Sci. USA 121, e2403324121 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuo, S. W., Lee, H. F., Huang, C. F., Huang, C. J. & Chang, F. C. Synthesis and self-assembly of helical polypeptide-random coil amphiphilic diblock copolymer. J. Polym. Sci. Part A Polym. Chem. 46, 3108–3119 (2008).

    Article 
    ADS 

    Google Scholar 

  • Chen, J. T., Thomas, E. L., Ober, C. K. & Mao, G. P. Self-assembled smectic phases in rod-coil block copolymers. Science 273, 343–346 (1996).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Borsali, R., Lecommandoux, S., Pecora, R. & Benoît, H. Scattering properties of rod−coil and once-broken rod block copolymers. Macromolecules 34, 4229–4234 (2001).

    Article 
    ADS 

    Google Scholar 

  • Scanga, R. A. et al. Asymmetric polymerization-induced crystallization-driven self-assembly of helical, rod-coil poly(aryl isocyanide) block copolymers. J. Am. Chem. Soc. 145, 6319–6329 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).

    Article 
    PubMed 

    Google Scholar 

  • Banno, M. et al. Two-dimensional bilayer smectic ordering of rigid rod−rod helical diblock polyisocyanides. Macromolecules 43, 6553–6561 (2010).

    Article 
    ADS 

    Google Scholar 

  • Vacogne, C. D., Wei, C. X., Tauer, K. & Schlaad, H. Self-assembly of alpha-helical polypeptides into microscopic and enantiomorphic spirals. J. Am. Chem. Soc. 140, 11387–11394 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wang, K. H., Liu, C. H., Tan, D. H., Nieh, M. P. & Su, W. F. Block sequence effects on the self-assembly behaviors of polypeptide-based penta-block copolymer hydrogels. ACS Appl. Mater. Interfaces 16, 6674–6686 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klok, H. A. & Lecommandoux, S. Supramolecular materials via block copolymer self-assembly. Adv. Mater. 13, 1217–1229 (2001).

  • Yang, T. J. et al. Tailoring synthetic polypeptide design for directed fibril superstructure formation and enhanced hydrogel properties. J. Am. Chem. Soc. 146, 5823–5833 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Minich, E. A., Nowak, A. P., Deming, T. J. & Pochan, D. J. Rod–rod and rod–coil self-assembly and phase behavior of polypeptide diblock copolymers. Polymer 45, 1951–1957 (2004).

    Article 

    Google Scholar 

  • Yang, T. J. et al. Synthesis and In situ thermal induction of beta-sheet nanocrystals in spider silk-inspired copolypeptides. J. Am. Chem. Soc. 146, 31849–31859 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Papadopoulos, P., Floudas, G., Klok, H. A., Schnell, I. & Pakula, T. Self-assembly and dynamics of poly(gamma-benzyl-l-glutamate) peptides. Biomacromolecules 5, 81–91 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Ye, Y. S., Choi, J. H., Winey, K. I. & Elabd, Y. A. Polymerized ionic liquid block and random copolymers: effect of weak microphase separation on ion transport. Macromolecules 45, 7027–7035 (2012).

    Article 
    ADS 

    Google Scholar 

  • Zhou, Q. H. et al. Synthesis and hierarchical self-assembly of rod−rod block copolymers via click chemistry between mesogen-jacketed liquid crystalline polymers and helical polypeptides. Macromolecules 43, 5637–5646 (2010).

    Article 
    ADS 

    Google Scholar 

  • Zhou, F. et al. Synthesis and self-assembly of rod–rod block copolymers with different rod diameters. Macromolecules 46, 8253–8263 (2013).

    Article 
    ADS 

    Google Scholar 

  • Haataja, J. S. et al. Double smectic self-assembly in block copolypeptide complexes. Biomacromolecules 13, 3572–3580 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Papadopoulos, P. et al. Nanodomain-induced chain folding in poly(gamma-benzyl-L-glutamate)-b-polyglycine diblock copolymers. Biomacromolecules 6, 2352–2361 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Parry, D. A. & Elliott, A. X-ray diffraction patterns of liquid crystalline solutions of poly-gamma-benzyl-L-glutamate. Nature 206, 616–617 (1965).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Choi, U. H. et al. Dielectric and viscoelastic responses of imidazolium-based ionomers with different counterions and side chain lengths. Macromolecules 47, 777–790 (2014).

    Article 
    ADS 

    Google Scholar 

  • Zhao, Q. J., Shen, C. T., Halloran, K. P. & Evans, C. M. Effect of network architecture and linker polarity on ion aggregation and conductivity in precise polymerized ionic liquids. ACS Macro Lett. 8, 658–663 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Robinson, C. & Ward, J. C. Liquid-crystalline structures in polypeptides. Nature 180, 1183–1184 (1957).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Stacy, E. W. et al. Fundamental limitations of ionic conductivity in polymerized ionic liquids. Macromolecules 51, 8637–8645 (2018).

    Article 
    ADS 

    Google Scholar 

  • Zhao, Q. J., Bennington, P., Nealey, P. F., Patel, S. N. & Evans, C. M. Ion specific, thin film confinement effects on conductivity in polymerized ionic liquids. Macromolecules 54, 10520–10528 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bocharova, V. et al. Role of fast dynamics in conductivity of polymerized ionic liquids. J. Phys. Chem. B 124, 10539–10545 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Wojnarowska, Z. et al. Effect of chain rigidity on the decoupling of ion motion from segmental relaxation in polymerized ionic liquids: ambient and elevated pressure studies. Macromolecules 50, 6710–6721 (2017).

    Article 
    ADS 

    Google Scholar 

  • Evans, C. M., Sanoja, G. E., Popere, B. C. & Segalrnan, R. A. Anhydrous proton transport in polymerized ionic liquid block copolymers: roles of block length, ionic content, and confinement. Macromolecules 49, 395–404 (2016).

    Article 
    ADS 

    Google Scholar 

  • Fan, F. et al. Ion conduction in polymerized ionic liquids with different pendant groups. Macromolecules 48, 4461–4470 (2015).

    Article 
    ADS 

    Google Scholar 

  • Wanakule, N. S. et al. Ionic conductivity of block copolymer electrolytes in the vicinity of order−disorder and order−order transitions. Macromolecules 42, 5642–5651 (2009).

    Article 
    ADS 

    Google Scholar 

  • Schulze, M. W., McIntosh, L. D., Hillmyer, M. A. & Lodge, T. P. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. Nano Lett. 14, 122–126 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Wagner, T. et al. Vinylphosphonic Acid Homo- and Block Copolymers. Macromol. Chem. Phys. 210, 1903–1914 (2009).

    Article 

    Google Scholar 

  • Kumar, A., Pisula, W. & Mullen, K. Effect of humidity and temperature on proton conduction in phosphonated copolymers. Mater. Today Commun. 20, 100539 (2019).

  • Villaluenga, I., Chen, X. C., Devaux, D., Hallinan, D. T. & Balsara, N. P. Nanoparticle-driven assembly of highly conducting hybrid block copolymer electrolytes. Macromolecules 48, 358–364 (2015).

    Article 
    ADS 

    Google Scholar 




  • Source link

    Previous Article

    Pakistan army says 300 hostages freed from train

    Next Article

    Google Play Store gets a smarter way to handle third-party apps

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨