Johnson, M. P. Photosynthesis. Essays in Biochemistry 60, 255–273 (2016).
Google Scholar
Ulmer, U. et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019).
Google Scholar
Kuttassery, F. et al. 1. Artificial photosynthesis sensitized by metal complexes: utilization of a ubiquitous element. Electrochemistry 82, 475–485 (2014).
Google Scholar
Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA. 103, 15729–15735 (2006).
Google Scholar
Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).
Google Scholar
Yoshino, S., Takayama, T., Yamaguchi, Y., Iwase, A. & Kudo, A. CO2 Reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 55, 966–977 (2022).
Google Scholar
Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).
Google Scholar
Yamauchi, M., Saito, H., Sugimoto, T., Mori, S. & Saito, S. Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord. Chem. Rev. 472, 214773 (2022).
Google Scholar
Wang, H., Tian, Y.-M. & König, B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat. Rev. Chem. 6, 745–755 (2022).
Google Scholar
Sumin, A. L. & Knowles, R. R. Organic synthesis away from equilibrium: contrathermodynamic transformations enabled by excited-state electron transfer. Acc. Chem. Res. 57, 1827–1838 (2024).
Google Scholar
Liu, Z., Caner, J., Kudo, A., Naka, H. & Saito, S. Redox-selective generation of aldehydes and H2 from alcohols under visible light. Chem. Eur. J. 19, 9452–9456 (2013).
Google Scholar
Masuda, Y., Ishida, N. & Murakami, M. Light-driven carboxylation of o-alkylphenyl ketones with CO2. J. Am. Chem. Soc. 137, 14063–14066 (2015).
Google Scholar
Mifsud, M. et al. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5, 3145 (2014).
Google Scholar
Guo, Y., An, W., Tian, X., Xie, L. & Ren, Y.-L. Coupling photocatalytic overall water splitting with hydrogenation of organic molecules: a strategy for using water as a hydrogen source and an electron donor to enable hydrogenation. Green Chem. 24, 9211–9219 (2022).
Google Scholar
Yuzawa, H. et al. Reaction mechanism of aromatic ring hydroxylation by water over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C 116, 25376–25387 (2012).
Google Scholar
Yuzawa, H., Kumagai, J. & Yoshida, H. Reaction mechanism of aromatic ring amination of benzene and substituted benzenes by aqueous ammonia over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C 117, 11047–11058 (2013).
Google Scholar
Yuzawa, H. et al. Anti-Markovnikov hydration of alkenes over platinum-loaded titanium oxide photocatalyst. Catal. Sci. Technol. 3, 1739–1749 (2013).
Google Scholar
Park, S., Jeong, J., Fujita, K., Yamamoto, A. & Yoshida, H. Anti-Markovnikov hydroamination of alkenes with aqueous ammonia by metal-loaded titanium oxide photocatalyst. J. Am. Chem. Soc. 142, 12708–12714 (2020).
Google Scholar
Courant, T. & Masson, G. Recent progress in visible-light photoredox-catalyzed intermolecular 1,2-difunctionalization of double bonds via an ATRA-type mechanism. J. Org. Chem. 81, 6945–6952 (2016).
Google Scholar
Lan, X.-W., Wang, N.-X. & Xing, Y. Recent advances in radical difunctionalization of simple alkenes. Eur. J. Org. Chem. 39, 5821–5851 (2017).
Google Scholar
Bao, X., Li, J., Jiang, W. & Huo, C. Radical-mediated difunctionalization of styrenes. Synthesis 51, 4507–4530 (2019).
Google Scholar
Sharma, S., Singh, J. & Sharma, A. Visible light assisted radical‐polar/polar‐radical crossover reactions in organic synthesis. Adv. Synth. Catal. 363, 3146–3169 (2021).
Google Scholar
Cramer, J., Sager, C. P. & Ernst, B. Hydroxyl groups in synthetic and natural-product-derived therapeutics: a perspective on a common functional group. J. Med. Chem. 62, 8915–8930 (2019).
Google Scholar
Speckmeier, E., Fuchs, P. J. W. & Zeitler, K. A synergistic LUMO lowering strategy using Lewis acid catalysis in water to enable photoredox catalytic, functionalizing C–C cross-coupling of styrenes. Chem. Sci. 9, 7096–7103 (2018).
Google Scholar
Shibutani, S., Nagao, K. & Ohmiya, H. Organophotoredox-catalyzed three-component coupling of heteroatom nucleophiles, alkenes, and aliphatic redox active esters. Org. Lett. 23, 1798–1803 (2021).
Google Scholar
Tlahuext‐Aca, A., Garza‐Sanchez, R. A. & Glorius, F. Multicomponent oxyalkylation of styrenes enabled by hydrogen‐bond‐assisted photoinduced electron transfer. Angew. Chem. Int. Ed. 56, 3708–3711 (2017).
Google Scholar
Fumagalli, G., Boyd, S. & Greaney, M. F. Oxyarylation and aminoarylation of styrenes using photoredox catalysis. Org. Lett. 15, 4398–4401 (2013).
Google Scholar
Altmann, L.-M., Zantop, V., Wenisch, P., Diesendorf, N. & Heinrich, M. R. Visible light promoted, catalyst‐free radical carbohydroxylation and carboetherification under mild biomimetic conditions. Chem. Eur. J. 27, 2452–2462 (2021).
Google Scholar
de Souza, E. L. S., Wiethan, C. & Correia, C. R. D. Iron-catalyzed meerwein carbooxygenation of electron-rich olefins: studies with styrenes, vinyl pyrrolidinone, and vinyl oxazolidinone. ACS Omega 4, 18918–18929 (2019).
Google Scholar
Kindt, S., Wicht, K. & Heinrich, M. R. Thermally induced carbohydroxylation of styrenes with aryldiazonium salts. Angew. Chem. Int. Ed. 55, 8744–8747 (2016).
Google Scholar
Xiong, P. et al. Electrochemically enabled carbohydroxylation of alkenes with H2O and organotrifluoroborates. J. Am. Chem. Soc. 140, 16387–16391 (2018).
Google Scholar
Dalton, T., Faber, T. & Glorius, F. C–H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).
Google Scholar
Yue, M. et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 146, 111180 (2021).
Google Scholar
Yang, W.-C. et al. Vanadyl species-catalyzed complementary β-oxidative carbonylation of styrene derivatives with aldehydes. Org. Biomol. Chem. 13, 2385–2392 (2015).
Google Scholar
Zheng, M. et al. Visible-light-driven, metal-free divergent difunctionalization of alkenes using alkyl formates. ACS Catal. 11, 542–553 (2021).
Google Scholar
Ha, T. M., Chatalova-Sazepin, C., Wang, Q. & Zhu, J. Copper-catalyzed formal [2+2+1] heteroannulation of alkenes, alkylnitriles, and water: method development and application to the total synthesis of (±)-sacidum lignan D. Angew. Chem. Int. Ed. 55, 9249–9252 (2016).
Google Scholar
Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Recent advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).
Google Scholar
Qi, M.-Y., Conte, M., Anpo, M., Tang, Z.-R. & Xu, Y.-J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 121, 13051–13085 (2021).
Google Scholar
Mori, S. & Saito, S. C(sp3)–H bond functionalization with styrenes via hydrogen-atom transfer to an aqueous hydroxyl radical under photocatalysis. Green Chem. 23, 3575–3580 (2021).
Google Scholar
Lyu, H. et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196–3201 (2019).
Google Scholar
Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).
Google Scholar
Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100 m2-scale. Nature 598, 304–307 (2021).
Google Scholar
Ding, C. et al. Abnormal effects of cations (Li+, Na+, and K+) on photoelectrochemical and electrocatalytic water splitting. J. Phys. Chem. B 119, 3560–3566 (2015).
Google Scholar
Chen, H. Y., Zahraa, O. & Bouchy, M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J. Photochem. Photobiol., A 108, 37–44 (1997).
Google Scholar
Garwood, J. J. A., Chen, A. D. & Nagib, D. A. Radical polarity. J. Am. Chem. Soc. 146, 28034–28059 (2024).
Google Scholar
Xue, Q. et al. Metal-free, n-Bu4NI-catalyzed regioselective difunctionalization of unactivated alkenes. ACS Catal. 3, 1365–1368 (2013).
Google Scholar
Prathima, P. S., Maheswari, C. U., Srinivas, K. & Rao, M. M. CuI/l-proline-catalyzed selective one-step mono-acylation of styrenes and stilbenes. Tetrahedron Lett. 51, 5771–5774 (2010).
Google Scholar
Li, Y., Song, D. & Dong, V. M. Palladium-catalyzed olefin dioxygenation. J. Am. Chem. Soc. 130, 2962–2964 (2008).
Google Scholar
Zhu, Q. & Nocera, D. G. Photocatalytic hydromethylation and hydroalkylation of olefins enabled by titanium dioxide mediated decarboxylation. J. Am. Chem. Soc. 142, 17913–17918 (2020).
Google Scholar
Schwarz, J. & König, B. Decarboxylative reactions with and without light – a comparison. Green Chem. 20, 323–361 (2018).
Google Scholar
Perlmutter, J. I. et al. Repurposing the antihistamine terfenadine for antimicrobial activity against staphylococcus aureus. J. Med. Chem. 57, 8540–8562 (2014).
Google Scholar
Ha, T. M., Wang, Q. & Zhu, J. Copper-catalysed cyanoalkylative cycloetherification of alkenes to 1,3-dihydroisobenzofurans: development and application to the synthesis of citalopram. Chem. Commun. 52, 11100–11103 (2016).
Google Scholar
Shirai, K. et al. Effect of water adsorption on carrier trapping dynamics at the surface of anatase TiO2 nanoparticles. Nano Lett. 16, 1323–1327 (2016).
Google Scholar
Kanakaraju, D., anak Kutiang, F. D., Lim, Y. C. & Goh, P. S. Recent progress of Ag/TiO2 photocatalyst for wastewater treatment: doping, co-doping, and green materials functionalization. Appl. Mater. Today 27, 101500 (2022).
Google Scholar
Cheng, Y. et al. Spatiotemporally synchronous oxygen self‐supply and reactive oxygen species production on Z‐scheme heterostructures for hypoxic tumor therapy. Adv. Mater. 32, 1908109 (2020).
Google Scholar
Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).
Google Scholar
Maeda, K. Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).
Google Scholar
Lachheb, H. et al. Photochemical oxidation of styrene in acetonitrile solution in presence of H2O2, TiO2/H2O2 and ZnO/H2O2. J. Photochem. Photobiol. A 346, 462–469 (2017).
Google Scholar
Li, X., Wang, Q., Lyu, J. & Li, X. Recent investigation on epoxidation of styrene with hydrogen peroxide by heterogeneous catalysis. ChemistrySelect 6, 9735–9768 (2021).
Google Scholar
Yu, W. & Zhao, Z. Catalyst-free selective oxidation of diverse olefins to carbonyls in high yield enabled by light under mild conditions. Org. Lett. 21, 7726–7730 (2019).
Google Scholar
Matsubara, C., Kawamoto, N. & Takamura, K. Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117, 1781–1784 (1992).