Artificial photosynthesis directed toward organic synthesis

Artificial photosynthesis directed toward organic synthesis


  • Johnson, M. P. Photosynthesis. Essays in Biochemistry 60, 255–273 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ulmer, U. et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kuttassery, F. et al. 1. Artificial photosynthesis sensitized by metal complexes: utilization of a ubiquitous element. Electrochemistry 82, 475–485 (2014).

    Article 
    CAS 

    Google Scholar 

  • Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA. 103, 15729–15735 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Yoshino, S., Takayama, T., Yamaguchi, Y., Iwase, A. & Kudo, A. CO2 Reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 55, 966–977 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Yamauchi, M., Saito, H., Sugimoto, T., Mori, S. & Saito, S. Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord. Chem. Rev. 472, 214773 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Wang, H., Tian, Y.-M. & König, B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat. Rev. Chem. 6, 745–755 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Sumin, A. L. & Knowles, R. R. Organic synthesis away from equilibrium: contrathermodynamic transformations enabled by excited-state electron transfer. Acc. Chem. Res. 57, 1827–1838 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, Z., Caner, J., Kudo, A., Naka, H. & Saito, S. Redox-selective generation of aldehydes and H2 from alcohols under visible light. Chem. Eur. J. 19, 9452–9456 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Masuda, Y., Ishida, N. & Murakami, M. Light-driven carboxylation of o-alkylphenyl ketones with CO2. J. Am. Chem. Soc. 137, 14063–14066 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mifsud, M. et al. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5, 3145 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Guo, Y., An, W., Tian, X., Xie, L. & Ren, Y.-L. Coupling photocatalytic overall water splitting with hydrogenation of organic molecules: a strategy for using water as a hydrogen source and an electron donor to enable hydrogenation. Green Chem. 24, 9211–9219 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yuzawa, H. et al. Reaction mechanism of aromatic ring hydroxylation by water over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C 116, 25376–25387 (2012).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Yuzawa, H., Kumagai, J. & Yoshida, H. Reaction mechanism of aromatic ring amination of benzene and substituted benzenes by aqueous ammonia over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C 117, 11047–11058 (2013).

    Article 
    CAS 

    Google Scholar 

  • Yuzawa, H. et al. Anti-Markovnikov hydration of alkenes over platinum-loaded titanium oxide photocatalyst. Catal. Sci. Technol. 3, 1739–1749 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Park, S., Jeong, J., Fujita, K., Yamamoto, A. & Yoshida, H. Anti-Markovnikov hydroamination of alkenes with aqueous ammonia by metal-loaded titanium oxide photocatalyst. J. Am. Chem. Soc. 142, 12708–12714 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Courant, T. & Masson, G. Recent progress in visible-light photoredox-catalyzed intermolecular 1,2-difunctionalization of double bonds via an ATRA-type mechanism. J. Org. Chem. 81, 6945–6952 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lan, X.-W., Wang, N.-X. & Xing, Y. Recent advances in radical difunctionalization of simple alkenes. Eur. J. Org. Chem. 39, 5821–5851 (2017).

    Article 
    MATH 

    Google Scholar 

  • Bao, X., Li, J., Jiang, W. & Huo, C. Radical-mediated difunctionalization of styrenes. Synthesis 51, 4507–4530 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Sharma, S., Singh, J. & Sharma, A. Visible light assisted radical‐polar/polar‐radical crossover reactions in organic synthesis. Adv. Synth. Catal. 363, 3146–3169 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Cramer, J., Sager, C. P. & Ernst, B. Hydroxyl groups in synthetic and natural-product-derived therapeutics: a perspective on a common functional group. J. Med. Chem. 62, 8915–8930 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Speckmeier, E., Fuchs, P. J. W. & Zeitler, K. A synergistic LUMO lowering strategy using Lewis acid catalysis in water to enable photoredox catalytic, functionalizing C–C cross-coupling of styrenes. Chem. Sci. 9, 7096–7103 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shibutani, S., Nagao, K. & Ohmiya, H. Organophotoredox-catalyzed three-component coupling of heteroatom nucleophiles, alkenes, and aliphatic redox active esters. Org. Lett. 23, 1798–1803 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tlahuext‐Aca, A., Garza‐Sanchez, R. A. & Glorius, F. Multicomponent oxyalkylation of styrenes enabled by hydrogen‐bond‐assisted photoinduced electron transfer. Angew. Chem. Int. Ed. 56, 3708–3711 (2017).

    Article 

    Google Scholar 

  • Fumagalli, G., Boyd, S. & Greaney, M. F. Oxyarylation and aminoarylation of styrenes using photoredox catalysis. Org. Lett. 15, 4398–4401 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Altmann, L.-M., Zantop, V., Wenisch, P., Diesendorf, N. & Heinrich, M. R. Visible light promoted, catalyst‐free radical carbohydroxylation and carboetherification under mild biomimetic conditions. Chem. Eur. J. 27, 2452–2462 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Souza, E. L. S., Wiethan, C. & Correia, C. R. D. Iron-catalyzed meerwein carbooxygenation of electron-rich olefins: studies with styrenes, vinyl pyrrolidinone, and vinyl oxazolidinone. ACS Omega 4, 18918–18929 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kindt, S., Wicht, K. & Heinrich, M. R. Thermally induced carbohydroxylation of styrenes with aryldiazonium salts. Angew. Chem. Int. Ed. 55, 8744–8747 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Xiong, P. et al. Electrochemically enabled carbohydroxylation of alkenes with H2O and organotrifluoroborates. J. Am. Chem. Soc. 140, 16387–16391 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dalton, T., Faber, T. & Glorius, F. C–H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Yue, M. et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 146, 111180 (2021).

    Article 
    MATH 

    Google Scholar 

  • Yang, W.-C. et al. Vanadyl species-catalyzed complementary β-oxidative carbonylation of styrene derivatives with aldehydes. Org. Biomol. Chem. 13, 2385–2392 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zheng, M. et al. Visible-light-driven, metal-free divergent difunctionalization of alkenes using alkyl formates. ACS Catal. 11, 542–553 (2021).

    Article 
    MATH 

    Google Scholar 

  • Ha, T. M., Chatalova-Sazepin, C., Wang, Q. & Zhu, J. Copper-catalyzed formal [2+2+1] heteroannulation of alkenes, alkylnitriles, and water: method development and application to the total synthesis of (±)-sacidum lignan D. Angew. Chem. Int. Ed. 55, 9249–9252 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Recent advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Qi, M.-Y., Conte, M., Anpo, M., Tang, Z.-R. & Xu, Y.-J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 121, 13051–13085 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mori, S. & Saito, S. C(sp3)–H bond functionalization with styrenes via hydrogen-atom transfer to an aqueous hydroxyl radical under photocatalysis. Green Chem. 23, 3575–3580 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Lyu, H. et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196–3201 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100 m2-scale. Nature 598, 304–307 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ding, C. et al. Abnormal effects of cations (Li+, Na+, and K+) on photoelectrochemical and electrocatalytic water splitting. J. Phys. Chem. B 119, 3560–3566 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Chen, H. Y., Zahraa, O. & Bouchy, M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J. Photochem. Photobiol., A 108, 37–44 (1997).

    Article 
    CAS 

    Google Scholar 

  • Garwood, J. J. A., Chen, A. D. & Nagib, D. A. Radical polarity. J. Am. Chem. Soc. 146, 28034–28059 (2024).

    CAS 

    Google Scholar 

  • Xue, Q. et al. Metal-free, n-Bu4NI-catalyzed regioselective difunctionalization of unactivated alkenes. ACS Catal. 3, 1365–1368 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Prathima, P. S., Maheswari, C. U., Srinivas, K. & Rao, M. M. CuI/l-proline-catalyzed selective one-step mono-acylation of styrenes and stilbenes. Tetrahedron Lett. 51, 5771–5774 (2010).

    Article 
    CAS 

    Google Scholar 

  • Li, Y., Song, D. & Dong, V. M. Palladium-catalyzed olefin dioxygenation. J. Am. Chem. Soc. 130, 2962–2964 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, Q. & Nocera, D. G. Photocatalytic hydromethylation and hydroalkylation of olefins enabled by titanium dioxide mediated decarboxylation. J. Am. Chem. Soc. 142, 17913–17918 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Schwarz, J. & König, B. Decarboxylative reactions with and without light – a comparison. Green Chem. 20, 323–361 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Perlmutter, J. I. et al. Repurposing the antihistamine terfenadine for antimicrobial activity against staphylococcus aureus. J. Med. Chem. 57, 8540–8562 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ha, T. M., Wang, Q. & Zhu, J. Copper-catalysed cyanoalkylative cycloetherification of alkenes to 1,3-dihydroisobenzofurans: development and application to the synthesis of citalopram. Chem. Commun. 52, 11100–11103 (2016).

    Article 
    CAS 

    Google Scholar 

  • Shirai, K. et al. Effect of water adsorption on carrier trapping dynamics at the surface of anatase TiO2 nanoparticles. Nano Lett. 16, 1323–1327 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kanakaraju, D., anak Kutiang, F. D., Lim, Y. C. & Goh, P. S. Recent progress of Ag/TiO2 photocatalyst for wastewater treatment: doping, co-doping, and green materials functionalization. Appl. Mater. Today 27, 101500 (2022).

    Article 

    Google Scholar 

  • Cheng, Y. et al. Spatiotemporally synchronous oxygen self‐supply and reactive oxygen species production on Z‐scheme heterostructures for hypoxic tumor therapy. Adv. Mater. 32, 1908109 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Maeda, K. Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Lachheb, H. et al. Photochemical oxidation of styrene in acetonitrile solution in presence of H2O2, TiO2/H2O2 and ZnO/H2O2. J. Photochem. Photobiol. A 346, 462–469 (2017).

    Article 
    CAS 

    Google Scholar 

  • Li, X., Wang, Q., Lyu, J. & Li, X. Recent investigation on epoxidation of styrene with hydrogen peroxide by heterogeneous catalysis. ChemistrySelect 6, 9735–9768 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Yu, W. & Zhao, Z. Catalyst-free selective oxidation of diverse olefins to carbonyls in high yield enabled by light under mild conditions. Org. Lett. 21, 7726–7730 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Matsubara, C., Kawamoto, N. & Takamura, K. Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117, 1781–1784 (1992).




  • Source link

    Previous Article

    Elon Musk slams Mike Myers' impression of him on "SNL"

    Next Article

    White House Crypto Czar David Sacks says he’s sold off all his crypto holdings

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨