FISH mapping in Xenopus pygmaeus refines understanding of genomic rearrangements and reveals jumping NORs in African clawed frogs

FISH mapping in Xenopus pygmaeus refines understanding of genomic rearrangements and reveals jumping NORs in African clawed frogs


  • Badjedjea G, Masudi FM, Akaibe BD, Gvoždík V (2022) Amphibians of Kokolopori: an introduction to the amphibian fauna of the Central Congolian Lowland Forests, Democratic Republic of the Congo. Amphib Reptil Conserv 16:35–70

    Google Scholar 

  • Bredeson JV, Mudd AB, Medina-Ruiz S, Mitros T, Smith OK, Miller KE et al. (2024) Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat Commun 15:579

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cannatella DC, de Sá RO (1993) Xenopus laevis as a model organism. Syst Biol 42:476–507

    Article 

    Google Scholar 

  • Castro J, Rodríguez S, Pardo BG, Sánchez L, Martínez P (2001) Population analysis of an unusual NOR-site polymorphism in brown trout (Salmo trutta L.). Heredity (Edinb) 86:291–302

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cauret CMS, Gansauge MT, Tupper AS, Furman BLS, Knytl M, Song XY et al. (2020) Developmental systems drift and the drivers of sex chromosome evolution. Mol Biol Evol 37:799–810

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chain FJJ, Ilieva D, Evans BJ (2008) Duplicate gene evolution and expression in the wake of vertebrate allopolyploidization. BMC Evol Biol 8:43

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan TM, Man KF, Kwong S, Tang KS (2008) A jumping gene paradigm for evolutionary multiobjective optimization. IEEE Trans Evol Comput 12:143–159

    Article 

    Google Scholar 

  • Courtet M, Flajnik M, Du Pasquier L (2001) Major histocompatibility complex and immunoglobulin loci visualized by in situ hybridization on Xenopus chromosomes. Dev Comp Immunol 25:149–157

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dedukh D, Riumin S, Chmielewska M, Rozenblut-Kościsty B, Kolenda K, Kazmierczak M et al. (2020) Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci Rep. 10:8720

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dedukh D, Altmanova M, Klima J, Kratochvil L (2022) Premeiotic endoreplication is essential for obligate parthenogenesis in geckos. Dev 149:dev200345

    Article 
    CAS 

    Google Scholar 

  • Dias S, Souza RC, Vasconcelos EV, Vasconcelos S, da Silva Oliveira AR, do Vale Martins L et al. (2024) Cytomolecular diversity among Vigna Savi (Leguminosae) subgenera. Protoplasma 261:859–875

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dittrich C, Hoelzl F, Smith S, Fouilloux CA, Parker DJ, O’Connell LA et al. (2024) Genome assembly of the dyeing poison frog provides insights into the dynamics of transposable element and genome-size evolution. Genome Biol Evol 16:evae109

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V (2002) “Ag-NORs” are not always true NORs: new evidence in mammals. Cytogenet Genome Res 98:75–77

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC (2004) A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol Phylogenet Evol 33:197–213

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evans BJ, Kelley DB, Melnick DJ, Cannatella DC (2005) Evolution of RAG-1 in polyploid clawed frogs. Mol Biol Evol 22:1193–1207

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evans BJ, Carter TF, Greenbaum E, Gvoždík V, Kelley DB, McLaughlin PJ et al. (2015) Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from West and Central Africa. PLoS One 10:e0142823

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans BJ, Mudd AB, Bredeson JV, Furman BLS, Wasonga DV, Lyons JB et al. (2022) New insights into Xenopus sex chromosome genomics from the Marsabit clawed frog X. borealis. J Evol Biol 35:1777–1790

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans BJ, Gvoždík V, Knytl M, Cauret CMS, Herrel A, Greenbaum E et al. (2024) Rapid sex chromosome turnover in African Clawed Frogs (Xenopus) and the origins of new sex chromosomes. Mol Biol Evol 41::msae234

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng YJ, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC et al. (2017) Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proc Natl Acad Sci USA 114:E5864–E5870

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fornaini NR, Bergelová B, Gvoždík V, Černohorská H, Krylov V, Kubíčková S et al. (2023) Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs (Xenopus, Pipidae). Eur J Wildl Res 69:81

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fornaini NR, Černohorská H, do Vale Martins L, Knytl M (2024) Cytogenetic analysis of the fish genus Carassius indicates divergence, fission, and segmental duplication as drivers of tandem repeat and microchromosome evolution. Genome Biol Evol 16:evae028

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furman BLS, Cauret CMS, Knytl M, Song XY, Premachandra T, Ofori-Boateng C et al. (2020) A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet 16:e1009121

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gvoždík V, Knytl M, Zassi-Boulou A-G, Fornaini NR, Bergelová B (2024) Tetraploidy in the Boettger’s dwarf clawed frog (Pipidae: Hymenochirus boettgeri) from the Congo indicates non-conspecificity with the captive population. Zool J Linn Soc 200:1034–1047

    Article 

    Google Scholar 

  • Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V et al. (2010) The genome of the Western clawed frog Xenopus tropicalis. Sci 328:633–636

    Article 
    CAS 

    Google Scholar 

  • Holtz MA, Racicot R, Preininger D, Stuckert AMM, Mangiamele LA (2023) Genome assembly of the foot-flagging frog, Staurois parvus: a resource for understanding mechanisms of behavior. G3 (Bethesda) 13:jkad193

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khokha MK, Krylov V, Reilly MJ, Gall JG, Bhattacharya D, Cheung CYJ et al. (2009) Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev Dyn 238:1398–1346

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knytl M, Fornaini NR (2021) Measurement of chromosomal arms and FISH reveal complex genome architecture and standardized karyotype of model fish, genus Carassius. Cells 10:2343

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knytl M, Smolík O, Kubíčková S, Tlapáková T, Evans BJ, Krylov V (2017) Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS One 12:e0177087

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knytl M, Tlapakova T, Vankova T, Krylov V (2018) Silurana chromosomal evolution: A new piece to the puzzle. Cytogenet Genome Res 156:223–228

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knytl M, Forsythe A, Kalous L (2022) A fish of multiple faces, which show us enigmatic and incredible phenomena in nature: biology and cytogenetics of the genus Carassius. Int J Mol Sci 23:8095

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knytl M, Fornaini NR, Bergelová B, Gvoždík V, Černohorská H, Kubíčková S et al. (2023) Divergent subgenome evolution in the allotetraploid frog Xenopus calcaratus. Gene 851:146974

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knytl M, Bergelová B, Fornaini NR, Černohorská H, Kubíčková S, Tlapáková T et al. (2024) Cytogenomics uncovers novel rearrangements in frogs of the genus Xenopus. In TAGC24, March 6–10, 619–620 (Metro Washington, DC, 2024).

  • Kobel HR, Du Pasquier L, Tinsley RC (1981) Natural hybridization and gene introgression between Xenopus gilli and Xenopus laevis laevis (Anura: Pipidae). J Zool 194:317–322

    Article 

    Google Scholar 

  • Krylov V, Tlapakova T, Macha J (2007) Localization of the single copy gene Mdh2 on Xenopus tropicalis chromosomes by FISH-TSA. Cytogenet Genome Res 116:110–112

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krylov V, Kubickova S, Rubes J, Macha J, Tlapakova T, Seifertova E et al. (2010) Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chromosom Res 18:431–439

    Article 
    CAS 

    Google Scholar 

  • Kuhl H, Tan WH, Klopp C, Kleiner W, Koyun B, Ciorpac M et al. (2024) A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes. Nat Commun 15:4781

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lau Q, Igawa T, Ogino H, Katsura Y, Ikemura T, Satta Y (2020) Heterogeneity of synonymous substitution rates in the Xenopus frog genome. PLoS One 15:e0236515

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article 

    Google Scholar 

  • Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS et al. (2015) A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenet Genome Res 145:187–191

    Article 
    PubMed 

    Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mezzasalma M, Glaw F, Odierna G, Petraccioli A, Guarino FM (2015) Karyological analyses of Pseudhymenochirus merlini and Hymenochirus boettgeri provide new insights into the chromosome evolution in the anuran family Pipidae. Zool Anz – A J Comp Zool 258:47–53

    Article 

    Google Scholar 

  • Mezzasalma M, Brunelli E, Odierna G, Guarino FM (2023) Evolutionary and genomic diversity of true polyploidy in tetrapods. Animals 13:1033

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitros T, Lyons JB, Session AM, Jenkins J, Shu S, Kwon T et al. (2019) A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev Biol 452:8–20

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morescalchi A (1973) Amphibia. In Chiarelli AB & Capanna E (eds.) Cytotaxonomy Vertebr. Evol., Academic Press, London, pp 233–348

  • Naito E, Dewa K, Ymanouchi H, Kominami R (1992) Ribosomal ribonucleic acid (rRNA) gene typing for species identification. J Forensic Sci 37:396–403

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pardue ML (1974) Localization of repeated DNA sequences in Xenopus chromosomes. Cold Spring Harb Symp Quant Biol 38:475–482

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pardue ML, Brown DD, Birnstiel ML (1973) Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma 42:191–203

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing, Vienna, Austria

  • Rebollo R, Horard B, Hubert B, Vieira C (2010) Jumping genes and epigenetics: Towards new species. Gene 454:1–7

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roco ÁS, Liehr T, Ruiz-García A, Guzmán K, Bullejos M (2021) Comparative distribution of repetitive sequences in the karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae). Genes (Basel) 12:617

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sánchez A, Jiménez R, Burgos M, Stitou S, Zurita F, Díaz de La Guardia R (1995) Cytogenetic peculiarities in the Algerian hedgehog: silver stains not only NORs but also heterochromatic blocks. Heredity (Edinb) 75:10–16

    Article 
    PubMed 

    Google Scholar 

  • Schmid M, Steinlein C (2015) Chromosome banding in Amphibia. XXXII. The genus Xenopus (Anura, Pipidae). Cytogenet Genome Res 145:201–217

    Article 
    PubMed 

    Google Scholar 

  • Schmid M, Evans BJ, Bogart JP (2015) Polyploidy in Amphibia. Cytogenet Genome Res 145:315–330

    Article 
    PubMed 

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sember A, Pelikánová Š, de Bello Cioffi M, Šlechtová V, Hatanaka T, Do Doan H et al. (2020) Taxonomic diversity not associated with gross karyotype differentiation: the case of bighead carps, genus Hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae). Genes (Basel) 11:479

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S et al. (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • da Silva DS, da Silva Filho HF, Cioffi MB, de Oliveira EHC, Gomes AJB (2021) Comparative cytogenetics in four Leptodactylus species (Amphibia, Anura, Leptodactylidae): Evidence of inner chromosomal diversification in highly conserved karyotypes. Cytogenet Genome Res 161:52–62

    Article 
    PubMed 

    Google Scholar 

  • da Silva DS, de Sousa RPC, Vallinoto M, da Costa Lima MR, da Costa RA, de Oliveira Furo I et al. (2024) Comparative molecular and conventional cytogenetic analyses of three species of Rhinella (Anura; Bufonidae). PLoS One 19:e0308785

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinzelle L, Thuret R, Hwang HY, Herszberg B, Paillard E, Bronchain OJ et al. (2012) Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. Genesis 50:316–324

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith OK, Limouse C, Fryer KA, Teran NA, Sundararajan K, Heald R et al. (2021) Identification and characterization of centromeric sequences in Xenopus laevis. Genome Res 31:958–967

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song XY, Furman BLS, Premachandra T, Knytl M, Cauret CMS, Wasonga DV et al. (2021) Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus). Philos Trans R Soc Lond B Biol Sci 376:20200095

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stöck M, Steinlein C, Lamatsch DK, Schartl M, Schmid M (2005) Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup. Genetica 124:255–272

    Article 
    PubMed 

    Google Scholar 

  • Symonová R, Howell WM (2018) Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics. Genes (Basel) 9:96

    Article 
    PubMed 

    Google Scholar 

  • Tandon P, Conlon F, Furlow JD, Horb ME (2017) Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev Biol 426:325–335

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Teixeira LSR, Seger KR, Targueta CP, Orrico VGD, Lourenço LB (2016) Comparative cytogenetics of tree frogs of the Dendropsophus marmoratus (Laurenti, 1768) group: Conserved karyotypes and interstitial telomeric sequences. Comp Cytogenet 10:753–767

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tennessen JA, Wei N, Straub SCK, Govindarajulu R, Liston A, Ashman TL (2018) Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biol 16:e2006062

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tymowska J (1991) Polyploidy and cytogenetic variation in frogs of the genus Xenopus. In: Green DM & Sessions SK (eds.) Amphibian cytogenetics and evolution, Academic Press, San Diego, pp 259–297

  • Tymowska J, Kobel HR (1972) Karyotype analysis of Xenopus muelleri (Peters) and Xenopus laevis (Daudin), Pipidae. Cytogenetics 11:270–278

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Unal Karakus S, Gaffaroğlu M, Karasu Ayata M, Knytl M (2024) A detailed karyological investigation of three endemic Cobitis Linnaeus, 1758 species (Teleostei, Cobitidae) in Anatolia, Türkiye. Cytogenet Genome Res 164:243–256

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uno Y, Nishida C, Takagi C, Ueno N, Matsuda Y (2013) Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. Heredity (Edinb) 111:430–436

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang W, Zhang X, Garcia S, Leitch AR, Kovarik A (2023) Intragenomic rDNA variation – the product of concerted evolution, mutation, or something in between? Heredity (Edinb) 131:179–188

    Article 
    CAS 
    PubMed 

    Google Scholar 




  • Source link

    Previous Article

    One chose justice, the other chose vengeance

    Next Article

    Trump says Bitcoin, Ethereum, and other valuable crypto assets will “be at the heart” of US crypto reserve

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨