Development of convergent adaptations reveal highly conserved early ontogenetic skull shape in fishes with amphibious vision

Development of convergent adaptations reveal highly conserved early ontogenetic skull shape in fishes with amphibious vision


  • Adriaens, D. & Verraes, W. Ontogeny of the osteocranium in the African catfish, Clarias gariepinus Burchell (1822)(Siluriformes: Clariidae): ossification sequence as a response to functional demands. J. Morphol. 235, 183–237 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Francis-West, P., Ladher, R., Barlow, A. & Graveson, A. Signalling interactions during facial development. Mech. Dev. 75, 3–28. https://doi.org/10.1016/S0925-4773(98)00082-3 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Hall, B. K. The neural crest in development and evolution (Springer Science and Business Media, 1999).

    Book 
    MATH 

    Google Scholar 

  • Cubbage, C. C. & Mabee, P. M. Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae). J. Morphol. 229, 121–160 (1996).

    Article 
    PubMed 

    Google Scholar 

  • Langille, R. M. & Hall, B. K. Development of the head skeleton of the Japanese medaka, Oryzias latipes (Teleostei). J. Morphol. 193, 135–158. https://doi.org/10.1002/jmor.1051930203 (1987).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Thieme, P., Vallainc, D. & Moritz, T. Postcranial skeletal development of Mugil cephalus L (Teleostei: Mugiliformes): Morphological and life history implications for Mugiliformes. Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlaa123 (2020).

    Article 

    Google Scholar 

  • Miller, B. S. & Kendall, A. W. Early life history of marine fishes (University of California Press Berkeley, 2009). https://doi.org/10.1525/9780520943766.

    Book 
    MATH 

    Google Scholar 

  • Collette, B., McGowen, G., Parin, N. & Mito, S. Beloniformes: development and relationships. In Ontogeny and systematics of fishes (eds Moser, H. G. et al.) (The American Society of Ichthyologists and Herpetologists, 1984).

    Google Scholar 

  • Smirnov, S., Borisov, V., Kapitanova, D., Abdissa, B. & Shkil, F. Heterochronies in skull development of Lake Tana large African barbs (Labeobarbus; Cyprinidae; Teleostei). J. Appl. Ichthyol. 28, 406–410. https://doi.org/10.1111/j.1439-0426.2012.01993.x (2012).

    Article 

    Google Scholar 

  • Borwein, B. & Hollenberg, M. J. The photoreceptors of the “four-eyed” fish Anableps anableps L. J. Morphol. 140, 405–441. https://doi.org/10.1002/jmor.1051400404 (1973).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Oliveira, F. G. et al. Topographic analysis of the ganglion cell layer in the retina of the four-eyed fish Anableps anableps. Visual Neurosci. 23, 879–886. https://doi.org/10.1017/S0952523806230232 (2006).

    Article 
    MATH 

    Google Scholar 

  • Owens, G. L., Rennison, D. J., Allison, W. T. & Taylor, J. S. In the four-eyed fish (Anableps anableps), the regions of the retina exposed to aquatic and aerial light do not express the same set of opsin genes. Biol. Lett. 8, 86–89. https://doi.org/10.1098/rsbl.2011.0582 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Perez, L. N. et al. Eye development in the four-eyed fish Anableps anableps: Cranial and retinal adaptations to simultaneous aerial and aquatic vision. Proc. R. Soc. B 284, 20170157. https://doi.org/10.1098/rspb.2017.0157 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwassmann, H. O. & Kruger, L. Experimental analysis of the visual system of the four-eyed fish Anableps microlepis. Vision Res. https://doi.org/10.1016/0042-6989(65)90004-0 (1965).

    Article 

    Google Scholar 

  • Simmich, J., Temple, S. E. & Collin, S. P. A fish eye out of water: Epithelial surface projections on aerial and aquatic corneas of the ‘four-eyed fish’ Anableps anableps. Clin. Exp. Optom. 95, 140–145. https://doi.org/10.1111/j.1444-0938.2011.00701.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Sivak, J. G. Optics of the eye of the “four-eyed fish” (Anableps anableps). Vision Res. https://doi.org/10.1016/0042-6989(76)90035-3 (1976).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Swamynathan, S. K., Crawford, M. A., Robison, W. G. Jr., Kanungo, J. & Piatigorsky, J. Adaptive differences in the structure and macromolecular compositions of the air and water corneas of the “four-eyed” fish (Anableps anableps). FASEB J. 17, 1996–2005. https://doi.org/10.1096/fj.03-0122com (2003).

    Article 
    PubMed 

    Google Scholar 

  • Oliveira, V. D. A., Fontoura, N. F. & Montag, L. F. D. A. Reproductive characteristics and the weight-length relationship in Anableps anableps (Linnaeus, 1758)(Cyprinodontiformes: Anablepidae) from the Amazon Estuary. Neotrop. Ichthyol. https://doi.org/10.1590/S1679-62252011005000042 (2011).

    Article 

    Google Scholar 

  • Turner, C. Adaptations for viviparity in embryos and ovary of Anableps anableps. J. Morphol. 62, 323–349. https://doi.org/10.1002/jmor.1050620208 (1938).

    Article 
    MATH 

    Google Scholar 

  • Peňáz, M. A general framework of fish ontogeny: A review of the ongoing debate. Folia Zool. 50, 241–256 (2001).

    Google Scholar 

  • Hu, W., Mu, Y., Lin, F., Li, X. & Zhang, J. New insight into visual adaptation in the mudskipper cornea: from morphology to the cornea-related COL8A2 gene. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2022.871370 (2022).

    Article 

    Google Scholar 

  • Dill, L. M. Refraction and the spitting behavior of the archerfish (Toxotes chatareus). Behav. Ecol. Sociobiol. 2, 169–184. https://doi.org/10.1007/BF00361900 (1977).

    Article 
    MATH 

    Google Scholar 

  • Newport, C., Wallis, G., Reshitnyk, Y. & Siebeck, U. E. Discrimination of human faces by archerfish (Toxotes chatareus). Sci. Rep. 6, 27523. https://doi.org/10.1038/srep27523 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baylor, E. R. Air and water vision of the Atlantic flying fish Cypselurus heterurus. Nature 214, 307–309. https://doi.org/10.1038/214307a0 (1967).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Collin, S. P. & Collin, H. B. The fish cornea: Adaptations for different aquatic environments. In Sensory biology of jawed fishes – New insights (eds Kapoor, B. G. & Hara, T. J.) 57–96 (Science Publishers Inc, 2001).

    MATH 

    Google Scholar 

  • Aiello, B. R. et al. The origin of blinking in both mudskippers and tetrapods is linked to life on land. Proc. Natl. Acad. Sci. U S A 120, e2220404120. https://doi.org/10.1073/pnas.2220404120 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Schwab, I. R., Ho, V., Roth, A., Blankenship, T. N. & Fitzgerald, P. G. Evolutionary attempts at 4 eyes in vertebrates. Trans. Am. Ophthalmol. Soc. 99, 145 (2001).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kimura, M. Early development of the mud-skipper, Periophthalmus cantonensis (Osbeck). Bull. Jpn. Soc. Sci. Fish 23, 754–757 (1958).

    Article 
    MATH 

    Google Scholar 

  • Maeda, K., Tsuhako, Y. & Tachihara, K. Chapter 3: Early Development of Mudskippers. In Fishes Out of Water: Biology and Ecology of Mudskippers (eds Jaafar, Z. & Murdy, E. O.) 69–88 (CRC Press, 2017).

    Chapter 
    MATH 

    Google Scholar 

  • Tsuhako, Y., Ishimatsu, A., Takeda, T., Huat, K. K. & Tachihara, K. The eggs and larvae of the giant mudskipper, Periophthalmodon schlosseri, collected from a mudflat in Penang Malaysia. Ichthyol. Res. 50, 178–181 (2003).

    Article 

    Google Scholar 

  • Watson, W. Larval development in blennies. In The Biology of Blennies (eds Patzner, R. A. et al.) 309–350 (Science Publishers, 2009).

    MATH 

    Google Scholar 

  • Narayanan, K. & Khan, A. The visual cells of the corsula mullet. J. Fish Biol. 47, 367–376. https://doi.org/10.1111/j.1095-8649.1995.tb01906.x (1995).

    Article 
    MATH 

    Google Scholar 

  • Munshi, J. D. & Singh, R. On the structure of retina of a fresh-water mullet, Rhinomugil corsula (Mugilidae, Pisces). Z Mikrosk-Anat Forsch. (Leipz) 89, 899–914 (1975).

    MATH 

    Google Scholar 

  • Breder, C. M. & Rosen, D. E. Rosen Modes of Reproduction in Fishes (Natural History Press, 1966).

    MATH 

    Google Scholar 

  • Werneburg, I. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m adductor mandibulae complex. PeerJ. https://doi.org/10.7717/peerj.769 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamaoka, K., Nanbu, T., Miyagawa, M., Isshiki, T. & Kusaka, A. Water surface tension-related deaths in prelarval red-spotted grouper. Aquaculture 189, 165–176 (2000).

    Article 

    Google Scholar 

  • Manna, R. K., Bhakta, D., Nair, S. M., Samanta, S. & Das, B. K. Unique behaviour-driven fishing strategy of freshwater mullet, Rhinomugil corsula (Hamilton, 1822) in lower and estuarine stretch of river ganga. Fish Technol. 61, 144–152 (2024).

    Google Scholar 

  • Fishelson, L. & Gon, O. Comparative embryogenesis of Australian and South African viviparous clinid fishes (Blennioidei, Teleostei). Afr. J. Mar. Sci. 31, 381–397. https://doi.org/10.2989/AJMS.2009.31.3.11.999 (2009).

    Article 

    Google Scholar 

  • Morris, S. L. & Gaudin, A. J. Osteocranial development in the viviparous surfperch Amphistichus argenteus (Pisces: Embiotocidae). J. Morphol. 174, 95–120 (1982).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Yamaoka, K., Nanbu, T., Miyagawa, M., Isshiki, T. & Kusaka, A. Water surface tension-related deaths in prelarval red-spotted grouper. Aquaculture 189, 165–176. https://doi.org/10.1016/S0044-8486(00)00354-9 (2000).

    Article 

    Google Scholar 

  • Amorim, P. F. & Costa, W. J. Multigene phylogeny supports diversification of four-eyed fishes and one-sided livebearers (Cyprinodontiformes: Anablepidae) related to major South American geological events. PLoS ONE 13, e0199201 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santini, F., May, M. R., Carnevale, G. & Moore, B. R. Bayesian inference of divergence times and feeding evolution in grey mullets (Mugilidae). bioRxiv, 019075 https://doi.org/10.1101/019075 (2015)

  • El-Mansi, A. A., Fouda, Y. A. & Sabry, D. A. Comparative structural and functional study on the eye of freshwater teleosts: Clarias gariepinus, Malapterurus electricus, Anguilla anguilla and Oreochromis niloticus. Folia Biol. (Cracow) 66, 89–102. https://doi.org/10.3409/fb_66-2.10 (2018).

    Article 

    Google Scholar 

  • Zhao, X. C. et al. The zebrafish cornea: structure and development. Invest. Ophthalmol. Visual Sci. https://doi.org/10.1167/iovs.05-1611 (2006).

    Article 
    MATH 

    Google Scholar 

  • Levine, M. W. VISION | Inner Retina and Ganglion Cells. In Encyclopedia of Fish Physiology (ed. Farrell, A. P.) 123–130 (Academic Press, 2011).

    Chapter 
    MATH 

    Google Scholar 

  • Fernald, R. D. Teleost vision: seeing while growing. J. Exp. Zool. 256, 167–180. https://doi.org/10.1002/jez.1402560521 (1990).

    Article 

    Google Scholar 

  • Higgs, D. M. & Fuiman, L. A. Ontogeny of visual and mechanosensory structure and function in Atlantic menhaden Brevoortia tyrannus. J. Exp. Biol. 199, 2619–2629. https://doi.org/10.1242/jeb.199.12.2619 (1996).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Kusmic, C. & Gualtieri, P. Morphology and spectral sensitivities of retinal and extraretinal photoreceptors in freshwater teleosts. Micron 31, 183–200. https://doi.org/10.1016/s0968-4328(99)00081-5 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Ahlbert, I. B. Organization of the cone cells in the retinae of salmon (Salmo salar) and trout (Salmo trutta trutta) in relation to their feeding habits. Acta Zool. 57, 13–35. https://doi.org/10.1111/j.1463-6395.1976.tb00208.x (1976).

    Article 

    Google Scholar 

  • Tohya, S., Mochizuki, A. & Iwasa, Y. Difference in the retinal cone mosaic pattern between zebrafish and medaka: Cell-rearrangement model. J. Theor. Biol. 221, 289–300. https://doi.org/10.1006/jtbi.2003.3192 (2003).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • van der Meer, H. & Anker, G. Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Pisces, Teleostei). Neth. J. Zool. 34, 197–209. https://doi.org/10.1163/002829684X00146 (1984).

    Article 
    MATH 

    Google Scholar 

  • Bowmaker, J. K. Visual pigments of fishes. In The visual system of fish (eds Douglas, R. H. & Djamgoz, M. B. A.) 81–107 (Springer, 1990).

    Chapter 
    MATH 

    Google Scholar 

  • Lythgoe, J. N. The Ecology of Vision (Oxford University Press, 1979).

    Google Scholar 

  • Flamarique, I., Hawryshyn, C. & Hárosi, F. Double-cone internal reflection as a basis for polarization detection in fish. J. Opt. Soc. Am. 15, 349358. https://doi.org/10.1364/josaa.15.000349 (1998).

    Article 

    Google Scholar 

  • Flamarique, I. & Hawryshyn, C. Photoreceptor types and their relation to the spectral and polarization sensitivities of clupeid fishes. J. Comp. Physiol. A. 182, 793803. https://doi.org/10.1007/s003590050224 (1998).

    Article 

    Google Scholar 

  • Lara, M. R. Morphology of the eye and visual acuities in the settlement-intervals of some coral reef fishes (Labridae, Scaridae). Environ. Biol. Fishes 62, 365378. https://doi.org/10.1023/A:1012214229164 (2001).

    Article 

    Google Scholar 

  • Cronin, T. W. & Marshall, J. Patterns and properties of polarized light in air and water. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 619626. https://doi.org/10.1098/rstb.2010.0201 (2011).

    Article 
    MATH 

    Google Scholar 

  • Cronin, T. W. et al. Polarization vision and its role in biological signaling. Integr. Comp. Biol. 43, 549558. https://doi.org/10.1093/icb/43.4.549 (2003).

    Article 
    MATH 

    Google Scholar 

  • Wehner, R. Polarization vision–a uniform sensory capacity?. J. Exp. Biol. 204, 25892596. https://doi.org/10.1242/jeb.204.14.2589 (2001).

    Article 
    MATH 

    Google Scholar 

  • Easter, S. Retinal growth in foveated teleosts: Nasotemporal asymmetry keeps the fovea in temporal retina. J. Neurosci. 12, 2381–2392 (1992).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Easter, S. S. Jr., Johns, P. R. & Baumann, L. Growth of the adult goldfish eye—I: Optics. Vision Res. 17, 469–477 (1977).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Higgs, D. M. & Fuiman, L. A. Associations between sensory development and ecology in three species of clupeoid fish. Copeia 1998, 133144. https://doi.org/10.2307/1447709 (1998).

    Article 
    MATH 

    Google Scholar 

  • Pankhurst, P. M., Pankhurst, N. & Montgomery, J. Comparison of behavioural and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion varium, Tripterygiidae (Forster, 1801). Brain Behav. Evol. 42, 178188. https://doi.org/10.1159/000114151 (1993).

    Article 
    MATH 

    Google Scholar 

  • Poling, K. R. & Fuiman, L. A. Sensory development and its relation to habitat change in three species of sciaenids. Brain Behav. Evol. 52, 270284. https://doi.org/10.1159/000006572 (1998).

    Article 
    MATH 

    Google Scholar 

  • Shand, J. Ontogenetic changes in retinal structure and visual acuity: A comparative study of coral-reef teleosts with differing post-settlement lifestyles. Environ. Biol. Fishes 49, 307322. https://doi.org/10.1023/A:1007353003066 (1997).

    Article 

    Google Scholar 

  • Huxley, J. S. Problems of Relative Growth (Methuen & Co. Ltd, 1932).

    MATH 

    Google Scholar 

  • Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric morphometrics for biologists: A primer 2nd edn. (Academic Press, 2012).

    MATH 

    Google Scholar 

  • Geomorph: Software for geometric morphometric analyses. R package version 4.0.4. (2022).

  • Baken, E., Collyer, M., Kaliontzopoulou, A. & Adams, D. geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13723 (2021).

    Article 

    Google Scholar 

  • Collyer, M. & Adams, D. RRPP: An R package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 17721779. https://doi.org/10.1111/2041-210X.13029 (2018).

    Article 

    Google Scholar 

  • RRPP: linear model evaluation with randomized residuals in a permutation procedure, R package version 1.1.2 (2021).

  • Thieme, P., Warth, P. & Moritz, T. Development of the caudal-fin skeleton reveals multiple convergent fusions within Atherinomorpha. Front. Zool 18, 20. https://doi.org/10.1186/s12983-021-00408-x (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bennett, H. S., Wyrick, A. D., Lee, S. W. & McNeil, J. H. Science and art in preparing tissues embedded in plastic for light microscopy, with special reference to glycol methacrylate, glass knives and simple stains. Stain Technol. 51, 7197. https://doi.org/10.3109/10520297609116677 (1976).




  • Source link

    Previous Article

    “PATCO on steroids”: Trump’s TSA union busting sparks calls for a general strike

    Next Article

    Cryptopolitan interviews William Banks, the man who rug pulled $50k for Palestine. He hates crypto

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨