Adriaens, D. & Verraes, W. Ontogeny of the osteocranium in the African catfish, Clarias gariepinus Burchell (1822)(Siluriformes: Clariidae): ossification sequence as a response to functional demands. J. Morphol. 235, 183–237 (1998).
Google Scholar
Francis-West, P., Ladher, R., Barlow, A. & Graveson, A. Signalling interactions during facial development. Mech. Dev. 75, 3–28. https://doi.org/10.1016/S0925-4773(98)00082-3 (1998).
Google Scholar
Hall, B. K. The neural crest in development and evolution (Springer Science and Business Media, 1999).
Google Scholar
Cubbage, C. C. & Mabee, P. M. Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae). J. Morphol. 229, 121–160 (1996).
Google Scholar
Langille, R. M. & Hall, B. K. Development of the head skeleton of the Japanese medaka, Oryzias latipes (Teleostei). J. Morphol. 193, 135–158. https://doi.org/10.1002/jmor.1051930203 (1987).
Google Scholar
Thieme, P., Vallainc, D. & Moritz, T. Postcranial skeletal development of Mugil cephalus L (Teleostei: Mugiliformes): Morphological and life history implications for Mugiliformes. Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlaa123 (2020).
Google Scholar
Miller, B. S. & Kendall, A. W. Early life history of marine fishes (University of California Press Berkeley, 2009). https://doi.org/10.1525/9780520943766.
Google Scholar
Collette, B., McGowen, G., Parin, N. & Mito, S. Beloniformes: development and relationships. In Ontogeny and systematics of fishes (eds Moser, H. G. et al.) (The American Society of Ichthyologists and Herpetologists, 1984).
Smirnov, S., Borisov, V., Kapitanova, D., Abdissa, B. & Shkil, F. Heterochronies in skull development of Lake Tana large African barbs (Labeobarbus; Cyprinidae; Teleostei). J. Appl. Ichthyol. 28, 406–410. https://doi.org/10.1111/j.1439-0426.2012.01993.x (2012).
Google Scholar
Borwein, B. & Hollenberg, M. J. The photoreceptors of the “four-eyed” fish Anableps anableps L. J. Morphol. 140, 405–441. https://doi.org/10.1002/jmor.1051400404 (1973).
Google Scholar
Oliveira, F. G. et al. Topographic analysis of the ganglion cell layer in the retina of the four-eyed fish Anableps anableps. Visual Neurosci. 23, 879–886. https://doi.org/10.1017/S0952523806230232 (2006).
Google Scholar
Owens, G. L., Rennison, D. J., Allison, W. T. & Taylor, J. S. In the four-eyed fish (Anableps anableps), the regions of the retina exposed to aquatic and aerial light do not express the same set of opsin genes. Biol. Lett. 8, 86–89. https://doi.org/10.1098/rsbl.2011.0582 (2012).
Google Scholar
Perez, L. N. et al. Eye development in the four-eyed fish Anableps anableps: Cranial and retinal adaptations to simultaneous aerial and aquatic vision. Proc. R. Soc. B 284, 20170157. https://doi.org/10.1098/rspb.2017.0157 (2017).
Google Scholar
Schwassmann, H. O. & Kruger, L. Experimental analysis of the visual system of the four-eyed fish Anableps microlepis. Vision Res. https://doi.org/10.1016/0042-6989(65)90004-0 (1965).
Google Scholar
Simmich, J., Temple, S. E. & Collin, S. P. A fish eye out of water: Epithelial surface projections on aerial and aquatic corneas of the ‘four-eyed fish’ Anableps anableps. Clin. Exp. Optom. 95, 140–145. https://doi.org/10.1111/j.1444-0938.2011.00701.x (2012).
Google Scholar
Sivak, J. G. Optics of the eye of the “four-eyed fish” (Anableps anableps). Vision Res. https://doi.org/10.1016/0042-6989(76)90035-3 (1976).
Google Scholar
Swamynathan, S. K., Crawford, M. A., Robison, W. G. Jr., Kanungo, J. & Piatigorsky, J. Adaptive differences in the structure and macromolecular compositions of the air and water corneas of the “four-eyed” fish (Anableps anableps). FASEB J. 17, 1996–2005. https://doi.org/10.1096/fj.03-0122com (2003).
Google Scholar
Oliveira, V. D. A., Fontoura, N. F. & Montag, L. F. D. A. Reproductive characteristics and the weight-length relationship in Anableps anableps (Linnaeus, 1758)(Cyprinodontiformes: Anablepidae) from the Amazon Estuary. Neotrop. Ichthyol. https://doi.org/10.1590/S1679-62252011005000042 (2011).
Google Scholar
Turner, C. Adaptations for viviparity in embryos and ovary of Anableps anableps. J. Morphol. 62, 323–349. https://doi.org/10.1002/jmor.1050620208 (1938).
Google Scholar
Peňáz, M. A general framework of fish ontogeny: A review of the ongoing debate. Folia Zool. 50, 241–256 (2001).
Hu, W., Mu, Y., Lin, F., Li, X. & Zhang, J. New insight into visual adaptation in the mudskipper cornea: from morphology to the cornea-related COL8A2 gene. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2022.871370 (2022).
Google Scholar
Dill, L. M. Refraction and the spitting behavior of the archerfish (Toxotes chatareus). Behav. Ecol. Sociobiol. 2, 169–184. https://doi.org/10.1007/BF00361900 (1977).
Google Scholar
Newport, C., Wallis, G., Reshitnyk, Y. & Siebeck, U. E. Discrimination of human faces by archerfish (Toxotes chatareus). Sci. Rep. 6, 27523. https://doi.org/10.1038/srep27523 (2016).
Google Scholar
Baylor, E. R. Air and water vision of the Atlantic flying fish Cypselurus heterurus. Nature 214, 307–309. https://doi.org/10.1038/214307a0 (1967).
Google Scholar
Collin, S. P. & Collin, H. B. The fish cornea: Adaptations for different aquatic environments. In Sensory biology of jawed fishes – New insights (eds Kapoor, B. G. & Hara, T. J.) 57–96 (Science Publishers Inc, 2001).
Google Scholar
Aiello, B. R. et al. The origin of blinking in both mudskippers and tetrapods is linked to life on land. Proc. Natl. Acad. Sci. U S A 120, e2220404120. https://doi.org/10.1073/pnas.2220404120 (2023).
Google Scholar
Schwab, I. R., Ho, V., Roth, A., Blankenship, T. N. & Fitzgerald, P. G. Evolutionary attempts at 4 eyes in vertebrates. Trans. Am. Ophthalmol. Soc. 99, 145 (2001).
Google Scholar
Kimura, M. Early development of the mud-skipper, Periophthalmus cantonensis (Osbeck). Bull. Jpn. Soc. Sci. Fish 23, 754–757 (1958).
Google Scholar
Maeda, K., Tsuhako, Y. & Tachihara, K. Chapter 3: Early Development of Mudskippers. In Fishes Out of Water: Biology and Ecology of Mudskippers (eds Jaafar, Z. & Murdy, E. O.) 69–88 (CRC Press, 2017).
Google Scholar
Tsuhako, Y., Ishimatsu, A., Takeda, T., Huat, K. K. & Tachihara, K. The eggs and larvae of the giant mudskipper, Periophthalmodon schlosseri, collected from a mudflat in Penang Malaysia. Ichthyol. Res. 50, 178–181 (2003).
Google Scholar
Watson, W. Larval development in blennies. In The Biology of Blennies (eds Patzner, R. A. et al.) 309–350 (Science Publishers, 2009).
Google Scholar
Narayanan, K. & Khan, A. The visual cells of the corsula mullet. J. Fish Biol. 47, 367–376. https://doi.org/10.1111/j.1095-8649.1995.tb01906.x (1995).
Google Scholar
Munshi, J. D. & Singh, R. On the structure of retina of a fresh-water mullet, Rhinomugil corsula (Mugilidae, Pisces). Z Mikrosk-Anat Forsch. (Leipz) 89, 899–914 (1975).
Google Scholar
Breder, C. M. & Rosen, D. E. Rosen Modes of Reproduction in Fishes (Natural History Press, 1966).
Google Scholar
Werneburg, I. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m adductor mandibulae complex. PeerJ. https://doi.org/10.7717/peerj.769 (2015).
Google Scholar
Yamaoka, K., Nanbu, T., Miyagawa, M., Isshiki, T. & Kusaka, A. Water surface tension-related deaths in prelarval red-spotted grouper. Aquaculture 189, 165–176 (2000).
Google Scholar
Manna, R. K., Bhakta, D., Nair, S. M., Samanta, S. & Das, B. K. Unique behaviour-driven fishing strategy of freshwater mullet, Rhinomugil corsula (Hamilton, 1822) in lower and estuarine stretch of river ganga. Fish Technol. 61, 144–152 (2024).
Fishelson, L. & Gon, O. Comparative embryogenesis of Australian and South African viviparous clinid fishes (Blennioidei, Teleostei). Afr. J. Mar. Sci. 31, 381–397. https://doi.org/10.2989/AJMS.2009.31.3.11.999 (2009).
Google Scholar
Morris, S. L. & Gaudin, A. J. Osteocranial development in the viviparous surfperch Amphistichus argenteus (Pisces: Embiotocidae). J. Morphol. 174, 95–120 (1982).
Google Scholar
Yamaoka, K., Nanbu, T., Miyagawa, M., Isshiki, T. & Kusaka, A. Water surface tension-related deaths in prelarval red-spotted grouper. Aquaculture 189, 165–176. https://doi.org/10.1016/S0044-8486(00)00354-9 (2000).
Google Scholar
Amorim, P. F. & Costa, W. J. Multigene phylogeny supports diversification of four-eyed fishes and one-sided livebearers (Cyprinodontiformes: Anablepidae) related to major South American geological events. PLoS ONE 13, e0199201 (2018).
Google Scholar
Santini, F., May, M. R., Carnevale, G. & Moore, B. R. Bayesian inference of divergence times and feeding evolution in grey mullets (Mugilidae). bioRxiv, 019075 https://doi.org/10.1101/019075 (2015)
El-Mansi, A. A., Fouda, Y. A. & Sabry, D. A. Comparative structural and functional study on the eye of freshwater teleosts: Clarias gariepinus, Malapterurus electricus, Anguilla anguilla and Oreochromis niloticus. Folia Biol. (Cracow) 66, 89–102. https://doi.org/10.3409/fb_66-2.10 (2018).
Google Scholar
Zhao, X. C. et al. The zebrafish cornea: structure and development. Invest. Ophthalmol. Visual Sci. https://doi.org/10.1167/iovs.05-1611 (2006).
Google Scholar
Levine, M. W. VISION | Inner Retina and Ganglion Cells. In Encyclopedia of Fish Physiology (ed. Farrell, A. P.) 123–130 (Academic Press, 2011).
Google Scholar
Fernald, R. D. Teleost vision: seeing while growing. J. Exp. Zool. 256, 167–180. https://doi.org/10.1002/jez.1402560521 (1990).
Google Scholar
Higgs, D. M. & Fuiman, L. A. Ontogeny of visual and mechanosensory structure and function in Atlantic menhaden Brevoortia tyrannus. J. Exp. Biol. 199, 2619–2629. https://doi.org/10.1242/jeb.199.12.2619 (1996).
Google Scholar
Kusmic, C. & Gualtieri, P. Morphology and spectral sensitivities of retinal and extraretinal photoreceptors in freshwater teleosts. Micron 31, 183–200. https://doi.org/10.1016/s0968-4328(99)00081-5 (2000).
Google Scholar
Ahlbert, I. B. Organization of the cone cells in the retinae of salmon (Salmo salar) and trout (Salmo trutta trutta) in relation to their feeding habits. Acta Zool. 57, 13–35. https://doi.org/10.1111/j.1463-6395.1976.tb00208.x (1976).
Google Scholar
Tohya, S., Mochizuki, A. & Iwasa, Y. Difference in the retinal cone mosaic pattern between zebrafish and medaka: Cell-rearrangement model. J. Theor. Biol. 221, 289–300. https://doi.org/10.1006/jtbi.2003.3192 (2003).
Google Scholar
van der Meer, H. & Anker, G. Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Pisces, Teleostei). Neth. J. Zool. 34, 197–209. https://doi.org/10.1163/002829684X00146 (1984).
Google Scholar
Bowmaker, J. K. Visual pigments of fishes. In The visual system of fish (eds Douglas, R. H. & Djamgoz, M. B. A.) 81–107 (Springer, 1990).
Google Scholar
Lythgoe, J. N. The Ecology of Vision (Oxford University Press, 1979).
Flamarique, I., Hawryshyn, C. & Hárosi, F. Double-cone internal reflection as a basis for polarization detection in fish. J. Opt. Soc. Am. 15, 349358. https://doi.org/10.1364/josaa.15.000349 (1998).
Google Scholar
Flamarique, I. & Hawryshyn, C. Photoreceptor types and their relation to the spectral and polarization sensitivities of clupeid fishes. J. Comp. Physiol. A. 182, 793803. https://doi.org/10.1007/s003590050224 (1998).
Google Scholar
Lara, M. R. Morphology of the eye and visual acuities in the settlement-intervals of some coral reef fishes (Labridae, Scaridae). Environ. Biol. Fishes 62, 365378. https://doi.org/10.1023/A:1012214229164 (2001).
Google Scholar
Cronin, T. W. & Marshall, J. Patterns and properties of polarized light in air and water. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 619626. https://doi.org/10.1098/rstb.2010.0201 (2011).
Google Scholar
Cronin, T. W. et al. Polarization vision and its role in biological signaling. Integr. Comp. Biol. 43, 549558. https://doi.org/10.1093/icb/43.4.549 (2003).
Google Scholar
Wehner, R. Polarization vision–a uniform sensory capacity?. J. Exp. Biol. 204, 25892596. https://doi.org/10.1242/jeb.204.14.2589 (2001).
Google Scholar
Easter, S. Retinal growth in foveated teleosts: Nasotemporal asymmetry keeps the fovea in temporal retina. J. Neurosci. 12, 2381–2392 (1992).
Google Scholar
Easter, S. S. Jr., Johns, P. R. & Baumann, L. Growth of the adult goldfish eye—I: Optics. Vision Res. 17, 469–477 (1977).
Google Scholar
Higgs, D. M. & Fuiman, L. A. Associations between sensory development and ecology in three species of clupeoid fish. Copeia 1998, 133144. https://doi.org/10.2307/1447709 (1998).
Google Scholar
Pankhurst, P. M., Pankhurst, N. & Montgomery, J. Comparison of behavioural and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion varium, Tripterygiidae (Forster, 1801). Brain Behav. Evol. 42, 178188. https://doi.org/10.1159/000114151 (1993).
Google Scholar
Poling, K. R. & Fuiman, L. A. Sensory development and its relation to habitat change in three species of sciaenids. Brain Behav. Evol. 52, 270284. https://doi.org/10.1159/000006572 (1998).
Google Scholar
Shand, J. Ontogenetic changes in retinal structure and visual acuity: A comparative study of coral-reef teleosts with differing post-settlement lifestyles. Environ. Biol. Fishes 49, 307322. https://doi.org/10.1023/A:1007353003066 (1997).
Google Scholar
Huxley, J. S. Problems of Relative Growth (Methuen & Co. Ltd, 1932).
Google Scholar
Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric morphometrics for biologists: A primer 2nd edn. (Academic Press, 2012).
Google Scholar
Geomorph: Software for geometric morphometric analyses. R package version 4.0.4. (2022).
Baken, E., Collyer, M., Kaliontzopoulou, A. & Adams, D. geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13723 (2021).
Google Scholar
Collyer, M. & Adams, D. RRPP: An R package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 17721779. https://doi.org/10.1111/2041-210X.13029 (2018).
Google Scholar
RRPP: linear model evaluation with randomized residuals in a permutation procedure, R package version 1.1.2 (2021).
Thieme, P., Warth, P. & Moritz, T. Development of the caudal-fin skeleton reveals multiple convergent fusions within Atherinomorpha. Front. Zool 18, 20. https://doi.org/10.1186/s12983-021-00408-x (2021).
Google Scholar
Bennett, H. S., Wyrick, A. D., Lee, S. W. & McNeil, J. H. Science and art in preparing tissues embedded in plastic for light microscopy, with special reference to glycol methacrylate, glass knives and simple stains. Stain Technol. 51, 7197. https://doi.org/10.3109/10520297609116677 (1976).