World City Report 2022: Envisaging the Future of Cities (UN-Habitat, 2022).
2018 Revision of World Urbanization Prospects (United Nations, Department of Economic and Social Affairs, 2018).
Sun, L., Chen, J., Li, Q. & Huang, D. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun. 11, 5366 (2020).
Google Scholar
Jedwab, R. & Vollrath, D. Urbanization without growth in historical perspective. Explor. Econ. Hist. 58, 1–21 (2015).
Google Scholar
Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).
Google Scholar
Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).
Google Scholar
Hao, L. et al. Urbanization alters atmospheric dryness through land evapotranspiration. npj Clim. Atmos. Sci. 6, 149 (2023).
Google Scholar
Qian, Y. et al. Urbanization impact on regional climate and extreme weather: current understanding, uncertainties, and future research directions. Adv. Atmos. Sci. 39, 819–860 (2022).
Google Scholar
Gregg, J. W., Jones, C. G. & Dawson, T. E. Urbanization effects on tree growth in the vicinity of New York City. Nature 424, 183–187 (2003).
Google Scholar
Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
Google Scholar
Zhang, Z., Zhao, W., Liu, Y. & Pereira, P. Impacts of urbanisation on vegetation dynamics in Chinese cities. Environ. Impact Assess. Rev. 103, 107227 (2023).
Google Scholar
Paschalis, A., Chakraborty, T., Fatichi, S., Meili, N. & Manoli, G. Urban forests as main regulator of the evaporative cooling effect in cities. AGU Adv. 2, e2020AV000303 (2021).
Ziter, C. D., Pedersen, E. J., Kucharik, C. J. & Turner, M. G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl Acad. Sci. USA 116, 7575–7580 (2019).
Google Scholar
Du, H. et al. Exacerbated heat stress induced by urban browning in the Global South. Nat. Cities https://doi.org/10.1038/s44284-024-00184-9 (2025).
Venter, Z. S., Hassani, A., Stange, E., Schneider, P. & Castell, N. Reassessing the role of urban green space in air pollution control. Proc. Natl Acad. Sci. USA 121, e2306200121 (2024).
Veerkamp, C. J. et al. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 52, 101367 (2021).
Google Scholar
McDonald, R. I. et al. Current inequality and future potential of US urban tree cover for reducing heat-related health impacts. npj Urban Sustain. 4, 18 (2024).
Google Scholar
Li, L. et al. Competition between biogeochemical drivers and land-cover changes determines urban greening or browning. Remote Sens. Environ. 287, 113481 (2023).
Zhang, W., Randall, M., Jensen, M. B., Brandt, M. & Wang, Q. Socio-economic and climatic changes lead to contrasting global urban vegetation trends. Glob. Environ. Change 71, 102385 (2021).
Google Scholar
Bille, R. A., Jensen, K. E. & Buitenwerf, R. Global patterns in urban green space are strongly linked to human development and population density. Urban For. Urban Green. 86, 127980 (2023).
Google Scholar
Czekajlo, A. et al. The urban greenness score: a satellite-based metric for multi-decadal characterization of urban land dynamics. Int. J. Appl. Earth Obs. Geoinf. 93, 102210 (2020).
Zhao, S., Liu, S. & Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl Acad. Sci. USA 113, 6313–6318 (2016).
Google Scholar
Guan, X., Shen, H., Li, X., Gan, W. & Zhang, L. A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity. Sci. Total Environ. 669, 342–352 (2019).
Google Scholar
Zhang, L. et al. Direct and indirect impacts of urbanizationon vegetation growth across the world’s cities. Sci. Adv. 8, eabo0095 (2022).
Google Scholar
Yang, L., Zhao, S. & Liu, S. Urban environments provide new perspectives for forecasting vegetation phenology responses under climate warming. Glob. Change Biol. 29, 4383–4396 (2023).
Google Scholar
Wang, S. et al. Urban−rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nat. Ecol. Evol. 3, 1076–1085 (2019).
Google Scholar
Wachsmuth, D. & Angelo, H. Green and gray: new ideologies of nature in urban sustainability policy. Ann. Am. Assoc. Geogr. 108, 1038–1056 (2018).
Chang, Y. et al. Effects of climate, socioeconomic development, and greening governance on enhanced greenness under urban densification. Resour. Conserv. Recycl. 206, 107624 (2024).
Google Scholar
Winbourne, J. B. et al. Tree transpiration and urban temperatures: current understanding, implications, and future research directions. Bioscience 70, 576–588 (2020).
Google Scholar
Justice, C. O. et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 36, 1228–1249 (1998).
Google Scholar
Huang, X. et al. Toward accurate mapping of 30-m time-series global impervious surface area (GISA). Int. J. Appl. Earth Obs. Geoinf. 109, 102787 (2022).
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
Google Scholar
He, W. et al. Global urban fractional changes at a 1 km resolution throughout 2100 under eight scenarios of Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). Earth Syst. Sci. Data 15, 3623–3639 (2023).
Google Scholar
Jiang, T. et al. National and provincial population and economy projection databases under Shared Socioeconomic Pathways(SSP1-5)_v2[DS/OL]. V4. Science Data Bank https://doi.org/10.57760/sciencedb.01683 (2022).
Chakraborty, T. et al. Large disagreements in estimates of urban land across scales and their implications. Nat. Commun. 15, 9165 (2024).
Google Scholar
Smith, D. A. Overurbanization reconceptualized: a political economy of the world-system approach. Urban Aff. Q. 23, 270–294 (1987).
Google Scholar
Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).
Google Scholar
Pandey, B., Brelsford, C. & Seto, K. C. Infrastructure inequality is a characteristic of urbanization. Proc. Natl Acad. Sci. USA 119, 4–11 (2022).
Google Scholar
Zhou, Y. et al. Satellite mapping of urban built-up heights reveals extreme infrastructure gaps and inequalities in the Global South. Proc. Natl Acad. Sci. USA 119, e2214813119 (2022).
Google Scholar
Chen, B. et al. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South. Nat. Commun. 13, 4636 (2022).
Google Scholar
Johnston, R. B. Arsenic and the 2030 agenda for sustainable development. In Proc. 6th International Congress on Arsenic in the Environment, AS 2016 (eds Bhattacharya, P. et al.) http://digitallibrary.un.org/record/3923923 (CRC Press, 2016).
Shi, Q., Liu, M., Marinoni, A. & Liu, X. UGS-1m: fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework. Earth Syst. Sci. Data 15, 555–577 (2023).
Google Scholar
Zhang, X. et al. Urban core greening balances browning in urban expansion areas in China during recent decades. J. Remote Sens. 4, 0112 (2024).
Chen, Y., Yue, W. & La Rosa, D. Which communities have better accessibility to green space? An investigation into environmental inequality using big data. Landsc. Urban Plan. 204, 103919 (2020).
Google Scholar
Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 15, 094044 (2020).
Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H – MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid V061 (NASA LP DAAC, 2021).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
Google Scholar
Kummu, M., Taka, M. & Guillaume, J. H. A. Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Sci. Data 5, 180004 (2018).
Google Scholar
Sorichetta, A. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Data 2, 150045 (2015).
Google Scholar
Jing, C. et al. Population, urbanization and economic scenarios over the Belt and Road region under the Shared Socioeconomic Pathways. J. Geogr. Sci. 30, 68–84 (2020).
Google Scholar
Copernicus DEM – Global and European Digital Elevation Model (COP-DEM) (Copernicus DSE, 2020); https://doi.org/10.5270/ESA-c5d3d65
Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006 (NASA LP DAAC, 2019).
Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).
Google Scholar
Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).
Google Scholar
Wyser, K. et al. On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6. Geosci. Model Dev. 13, 3465–3474 (2020).
Google Scholar
Dunne, J. P. et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015 (2020).
Google Scholar
Lurton, T. et al. Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. J. Adv. Model. Earth Syst. 12, e2019MS001940 (2020).
Google Scholar
Volodin, E. M. et al. Simulation of the modern climate using the INM-CM48 climate model. Russ. J. Numer. Anal. Math. Model. 33, 367–374 (2018).
Google Scholar
Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).
Google Scholar
Zhao, J., Zhao, X., Wu, D., Meili, N. & Fatichi, S. Satellite-based evidence highlights a considerable increase of urban tree cooling benefits from 2000 to 2015. Glob. Change Biol. 29, 3085–3097 (2023).
Google Scholar
Chen, J. Contrasting effects of urbanization on vegetation between Global South and Global North. Zenodo https://doi.org/10.5281/zenodo.14630847 (2025).